期刊文献+

基于故障仿真的诊断知识获取关键技术研究 被引量:6

Key Technologies for Acquiring Diagnosis Knowledge Based on Fault Simulation
下载PDF
导出
摘要 利用PSPICE软件进行电路器件的仿真,并以故障仿真方法获取诊断知识,可部分代替经验故障数据积累和人工实际故障模拟方法建立故障诊断知识库,解决电子设备尤其是故障知识贫乏的新型装备的维修诊断过程中的故障现象、数据获取和故障知识库建立过程困难和对专业知识的依赖性等问题。对复杂电子装备电路板级故障仿真的关键技术:测试对象的仿真建模,仿真故障注入技术,测试节点优选技术和测试集优化策略进行研究,将其应用于地炮情报射击指挥系统仿真实验平台,并给出实例分析。 Utilizing PSPICE software to carry out the simulation of PCB elements, and obtaining diagnosis knowledge through fault simulation, can replace the methods of accumulation for experience fault data and practical fault setup to build knowledge base of fault diagnosis partly. And it can resolve some problems for electronic equipment especially new ones that are short of fault experience, such as being trouble to get fault phenomenon and data to build fault knowledge data base, and extremely depending upon professional diagnosis knowledge. It is discussed about the key technologies for PCB simulation of complex equipments including simulation modeling of test object, fault injection of simulation, optimized selection of test node and optimization strategy of test set, and those are applied to the simulation experiment platform for the cannon information, shooting and command system. Some example analyses are presented after the discussion.
出处 《计算机仿真》 CSCD 2008年第1期31-35,共5页 Computer Simulation
基金 总装通保科研计划项目(2005装字第580号)
关键词 故障仿真 测试节点 故障注入 测试集优化 诊断知识 Fault simulation Test node Fault injection Test set optimization Diagnosis knowledge
  • 相关文献

参考文献4

二级参考文献22

  • 1林孔元,杨正瓴.模型故障诊断中测量点优选的一类期望熵法[J].天津大学学报,1994,27(4):398-402. 被引量:6
  • 2孙增圻 张再兴 等.智能控制理论及技术[M].北京:清华大学出版社,1997..
  • 3杨应成 唐大全.航空检测技术[M].烟台:海军航空工程学院,1999..
  • 4Ghosb I,Jha N K,Bhawmik S. A BIST scheme for RTL circuits based on symbolic testability analysis [ J ]. IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems,2000,19(1) : 111 - 128.
  • 5Aminian M and Aminlan F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor[ J ]. IEEE Trans, on CAS- Ⅱ ,2000,47(2) :151 - 156.
  • 6Gomm J B. On-line leaning for fault classification using an adaptive neuro-fuzzy networks[ C ]. Pro. of IFAC World Congress. USA:San Francisco, 1996 : 175 - 180.
  • 7Zhang J, Morris A J and Martin E B. Robust process fault detection and diagnosis using neuro-fuszy networs [ C ]. Pro. of IFAC World Congress. USA :San Francisco, 1996 : 169 - 174.
  • 8Colomi A, Dori$o M, Maniemo V. Distributed optimization by ant colonies[A]. Proc. 1st European Conf. On artificial life [C].Paris,France:Elsevier, 1991:134 - 142.
  • 9Hideo Fujiwara, Shunichi Toda. The complexity of fault detection problems for combinational logic circuits [ J ].IEEE Trans. Comput. June.1982,C-31(6).
  • 10http://reinforcementlearning, ai-depot, com/lntro. html[ Z/OL].

共引文献60

同被引文献36

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部