期刊文献+

基于标值点过程的遥感影像道路网络提取 被引量:2

Road Network Extraction from Remote Sensing Image Based on a Marked Point Process
下载PDF
导出
摘要 针对高分辨率遥感影像道路网络的特点,采用基于贝叶斯理论的全自动方法从遥感影像中提取道路。根据道路的局部和全局特征,使用标值点过程对道路建模,采用结合可逆跳跃马尔可夫链蒙特卡罗算法的模拟退火算法优化求得全局最优解。提出新的预处理方法得到道路的位置和方向信息,提出基于预处理的生灭转移核以降低算法的搜索空间,提出基于连接的移动转移核以加快算法的收敛速度。实验结果表明,该方法可以快速、有效地从不同的遥感影像(光学、SAR)提取道路网络。 A method based on the Bayesian theory is presented to extract road networks in remote sensing images. A model based on a marked point process is designed to exploit as fully as possible the properties of the network, and the optimization is done via simulated annealing using a Reversible Jump Markov Chain Monte Carlo algorithm. A new preprocessing method is proposed to extract the location and orientation information. A birth - and - death proposal kernel based on preprocessing is proposed to reduce the searching space. A move proposal kernel based on connection is proposed to accelerate the convergence of the algorithm. The experimental results show that this method can extract road networks from different kinds of remote sensing images fast and efficiently.
作者 刘琳琳 洪文
出处 《计算机仿真》 CSCD 2008年第1期221-224,309,共5页 Computer Simulation
关键词 标值点过程 道路提取 可逆跳跃马尔可夫链蒙特卡罗法 转移核 Marked point process Road extraetion Reversible jump Markov chain Monte Carlo method Proposal kernel
  • 相关文献

参考文献7

  • 1J Trinder, Y Wang. Knowledge - Based Road Interpretation in Aerial Images[ J]. International Archives of Photogrammetry and Remote Sensing, 1998, 32(4) : 635 -640.
  • 2F Tupin, et al. Detection of Linear Features in SAR Images : Application to Road Network Extraction [ J ]. IEEE Trans Geoscience and Remote Sensing, 1998, 36(2) : 434 -453.
  • 3C acoste, X Descombes, J Zerubia. A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing [ R ]. France : Research Report 4516, INRIA, July 2002.
  • 4R Stoica, X Descombes, J Zerubia. A Gibbs point process for road extraction in remotely sensed images [ J ]. International Journal of Computer Vision, 2004, 57(2) : 121 -136.
  • 5C Loscate, X Descombes, J Zerubia. Point processes for unsupervised line network extraction in remote sensing[ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1568 - 1579.
  • 6M Barzohar, D B Cooper. Automatic Finding of Main Roads in Aerial Images by Using Geometric - Stochastic Models and Estimation [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996, 18(7) : 707-721.
  • 7M van Lieshout, R toica. The Candy Model Revisited: Markov Properties and Inference [ R ]. The Netherlands: Research Report PNA- R0115, CWI, 2001.

同被引文献23

  • 1赵泉华,吴优,张洪云,李玉.基于局部结构约束标识点过程的遥感影像道路提取[J].仪器仪表学报,2020(7):185-195. 被引量:3
  • 2KotzS 吴喜之.现代贝叶斯统计学[M].北京:中国统计出版社,2000..
  • 3Geman S,Geman D.Stochastic relaxation,Gibbs distribution, and the Bayesian restoration of images[J].lEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6: 721-741.
  • 4Ortner M, Descombes X, Zerubia J.A marked point process of rectangles and segments for automatic analysis of digital elevation models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI), 2008,30( 1 ) : 105-119.
  • 5Berger J O.Statistical decision theory and Bayesian analysis[M]. 2nd ed.Berlin:Springer-Verlag, 1985.
  • 6Tuzel O,Meer P.Region covariance: a fast descriptor for detection and classification[C]//Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 2006: 589-600.
  • 7Liu J.Monte Carlo strategies in scientific computing[M]//Ber- lin : Springer-Verlag, 2005.
  • 8Uddin M S, Shioyama T.Detection of pedestrian crossing using bipolarity feature-an image-based technique[J].IEEE Trans- actions on Intelligent Transportation Systems,2005,6(4): 439-445.
  • 9Stephan S.Zebra-crossing detection for the partially sighted[C]// Proceedings of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition, 2000: 211-217.
  • 10Sichelschmidt S, Haselhoff A, Kummert A, et al.Pedestrian crossing detecting as a part of an urban pedestrian safety system[C]//Proceedings of 2010 IEEE Intelligent Vehicles Symposium,CA,USA,June 2010:21-24.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部