期刊文献+

基于GAAA算法的深海集矿车的最优路径规划 被引量:1

Study of Mining Vehicle Optimal Path Planning Control Based on GAAA Algorithm
下载PDF
导出
摘要 针对提高深海集矿车的集矿效率,实现最优路径规划的目标,建立了从起始点到达目的点时,集矿机所需时间最短、耗能最少的多目标优化问题的模型,并通过对子目标加权将多目标优化问题转换成单目标优化;在蚁群算法的基础上,采用了将遗传算法与蚁群算法相融合的算法,即GAAA算法;对集矿车作业路径进行寻优控制,在实现高集矿覆盖率和集矿效率的同时,提高了集矿车整机作业效率;仿真实验表明,GAAA算法用于集矿车路径寻优是可行的和有效的。 In order to improve the efficiency of deep ocean mining vehicle, in this article we build a multi--objective optimal model with minimal time and energy consumption for the vehicle, then transfer the multi--objective optimization to a single objective through setting up a set of weight parameters, The application of genetic algorithms (GA) inosculated with ant algorithms (AA) is studied . The simulation results show that the algorithm greatly improves the computational efficiency and it is feasible.
出处 《计算机测量与控制》 CSCD 2008年第1期103-105,131,共4页 Computer Measurement &Control
基金 国际海底区域研究开发"十五"项目(DY105-03-02-06) 国家重点基础研究发展规划项目(2002CB312203) 国家自然科学基金资助项目(60505018)
关键词 集矿车 多目标优化 GAAA算法#路径规划 mining vehicle multi--objective optimization GAAA algorithm path planning
  • 相关文献

参考文献7

二级参考文献22

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 2陈向阳,苗广祥.基于自适应遗传算法的PID参数优化仿真研究[J].自动化与仪表,2005,20(1):30-32. 被引量:5
  • 3熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 4陈新明.深海采矿中试集矿机技术设计[R] .长沙:长沙矿山研究院,2000.
  • 5Chung Jin S,Cheng B.MSE and FEM modeling of thrusts to elastic joints of long vertical pipe in 3-D nonlinear motions[J].International Journal of Offshore and Polar Engineering 1999,9(2):117~125.
  • 6Jayaraman V K, Kulkarni B D, et al. Dynamic optimization of fed-batch bioreactors using the ant algorithm [J]. Biotechnol. Prog.2001, 17: 81-88.
  • 7Mathur M, Karale S B, et al. Ant colony approach to continuous function optimization [J]. Ind. Eng. Chem. Res,2000,39:3814-3822.
  • 8李天成,罗键. 应用智能蚂蚁算法解决旅行商问题[D].厦门:厦门大学自动化系,2003.LI Tiancheng,LUO Jian.An intelligent ant system for solving TSP[D].Xiamen:Dept of Automation,Xiamen University,2003.
  • 9刘玉明. 基于遗传算法的智能水下机器人全局路径规划的研究[D].哈尔滨:哈尔滨工程大学船舶工程学院,2002.LIU Yuming.Research on global path planning for AUV based on genetic algorithm[D].Harbin:Harbin Engineering University,2002.
  • 10MARTIN M, FRANK R, HARTMUT S. Multi colony ant algorithms [J]. Journal of Heuristics, 2002,8:305-320.

共引文献231

同被引文献15

  • 1张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 2Yamazaki T. &T. Sharma. Distribution characteristics of CO- rich manganese deposition sea- mountain the cen- tral Pacific Ocean [J]. Marine Geo resources & Geo technology , 1998, (4).
  • 3Manheim F. T. Marine Cobalt Resources [J]. Science , 1986, (4750).
  • 4James Hein. Cobalt rich ferro manganese crusts:global distribution composition, origin and Research activities. Poly metallic massive sulphides and cobalt - rich ferro- manganese crusts: status and prospects [R]. ISA Technical study, 2000, ( 2 ).
  • 5Nilsson N. A mobile automation:An application of artifi- cial intelligence techniques [A]. Proceedings of the 1st International Joint Conferenceon Artificial Intelligence [C], Washington, USA, 1969.
  • 6刘勇,康立山,陈毓屏.非数值并行算法(第二册遗传算法)[M].北京:科学出版社,2000.
  • 7吴卫国,陈辉堂.非完整轮式移动机器人控制研究[A].1997中国控制与决策年会[C],1997.
  • 8Deb K. & S. Agrawal. A niched - penalty approach for constraint handling in genetic algorithms [ A ]. Proceedings of the ICANNGA [ C ] , Portoroz, Slovenia, 1999.
  • 9Kazartis S. A. , S. E. Papadakis & J. B. Theocharis. Microgenetic algorithms as generalized hill - climbing operators for GA optimization [J]. Evolutionary Computation , 2001, (3).
  • 10Krishnakumar k. ,&D. E. Goldberg Control system opti- mization using genetic algorithms [J]. Journal of Guidance. Control and Dynamics, 1992, (3).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部