期刊文献+

低马赫数射流火焰多维直接数值模拟 被引量:1

Direct Numerical Simulations of Low Mach Number Plane Jet Flames
下载PDF
导出
摘要 应用高精度类谱紧致Padé格式,配合特征边界(NSCBC)技术,采用方程分裂的投射算法,并通过可变系数Poisson方程多重网格求解,使得散度约束条件获得满足,克服了模拟中虚假热膨胀问题,发展了针对低马赫数射流火焰的直接模拟程序.对2种典型的射流火焰问题进行了较为详细的计算,表明在零初始速度条件下,射流火焰具有Kelvin-Helmholtz涡旋结构,但与可变密度射流相比,后涡旋区域大尺度运动衰减较快.在平行流动初始条件下,射流火焰具有一致的射流不稳定控制频率,同时射流火焰本身具有绝对不稳定性特征. A method is proposed to solve a low-Mach number jet flame. It is dissipation-free, the spurious heat release is found to be greatly controlled and thus avoids violation of the conservation of kinetic energy. The key ingredient is that the solver of the governing equations is built based on a projection algorithm and a Poisson equation with variable coefficient for the hydrodynamic pressure is solved by using a multigTid technique. Accurate boundary conditions NSCBC(navier-stokes characteristics boundary condition) suggested by Poinsot compatible with modem non-dissipative high order spectral-like finite difference schemes developed by Lele was adopted, and the free jet flames were studied numerically using two kinds of initial conditions. Two characteristic Kelvin Helmholtz vortices are observed under the zero initial velocity condition. This is consistent with the results of variable-density jets in recent literature, it is shown, however, that behind large vortical structtaes attenuate more quickly than that of variable-density jets. Under longitudinal initial velocity conditions, the spectra analyses demonstrate that the jet preferred mode is dominant in jet flames. Meanwhile, it verifies jet flames as absolutely unstable flow.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2008年第1期16-22,共7页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(504760275067609150536030) 教育部新世纪优秀人才支持计划资助项目(NCET-06-0546) 中国科学技术大学青年科学基金资助项目
关键词 低马赫数 射流火焰 直接数值模拟 变系数Poisson方程 low-Mach number jet flames direct numerical simulation Poisson equation with variable coefficient
  • 相关文献

参考文献17

  • 1Baum M, Poinsot T, Thevenin D. Accurate boundary conditions for multicomponent reactive flows [ J]. Journal of Computational Physics, 1994, 116(2): 247-261.
  • 2Freund J B. Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound [ J ]. AIAA Journal, 1997, 35(4): 740-742.
  • 3Ravier S, Abid M, Amielh M, et al. Direct numerical simulations of variable-density plane jets [J]. Journal of Fluid Methanics, 2006, 546: 153-191.
  • 4Nicoud F. Conservative high-order finite-difference schemes for low-Mach number flows [J]. Journal of Computational Physics, 2000, 158(1) : 71-97.
  • 5Tomboulides A G, Lee J C Y, Orszag S A. Numerical simulation of low Mach number reactive flows [J]. Journal of Scientific Computing, 1997, 12(2): 139-163.
  • 6Charles David Pierce. Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion [ D ]. California, USA: Department of Mechanical Engineering, Stanford University, 2001.
  • 7Morinishi Y, Lund T S, Vasilyev O V, et al. Fully conservative higher order fmite difference schemes for incompressible flow [J]. Journal of Comptational Physics, 1998, 143 (1) : 90- 124.
  • 8WiUiamson J H. Low-storage Runge-Kutta schemes [J]. Journal of Computational Physics, 1980, 35(1): 48-56.
  • 9Lele S K. Compact finite difference schemes with spectral-like resolution [J]. Journal of Computational Physics, 1992, 103 (1) : 16-42.
  • 10Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes [J]. Journal of Computational Physics, 1994, 115 (1) : 200-212.

同被引文献14

  • 1Klimenko A Y, Bilger R W. Conditional moment closure for turbulent combustion [ J ]. Progress in Energy and Combustion Science, 1999, 25(6) : 595-687.
  • 2Swaminathan N, Bilger R W. Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames [J]. Combustion and Flame, 1999, 116(4) : 519-545.
  • 3Barlow R S, Smith N S A, Chen J Y, et al. Nitric oxide formation in dilute hydrogen jet flames: Isolation of the effects of radiation and turbulence-chemistry submodels [ J]. Combustion and Flame, t999, 117(1/2) : 4-31.
  • 4Jimenez C, Cuenot B, Poinsot T. Numerical simulation and modeling for lean stratified propane-air flames [ J ]. Combustion and Flame, 2002, 128(1/2) :1-21.
  • 5Kronenburg A, Bilger R W, Kent J H. Modeling soot formation in turbulent methane-air jet diffusion flames [ J]. Combustion and Flame, 2000, 121 (1/2) : 24-4-0.
  • 6Devaud C B, Bray K N C. Assessment of the applicability of conditional moment closure to a lifted turbulent flame: First order model [ J]. Combustion and Flame, 2003, 132 (1/ 2) :102-114.
  • 7Cha C M, Pitsch H. High-order conditional moment closure modelling of local extinction and reignition in turbulent combustion [ J ]. Combustion Theory and Modelling, 2002, 6: 425-437.
  • 8Cha C M, Kosaly G, Pitsch H. Modeling extinction and reignition in turbulent nonpremixed combustion using a doubly-conditional moment closure approach [ J ]. Physics of Fluids, 2001, 13(12): 3824-3834.
  • 9Ravier S, Abid M, Amielh M, et al. Direct numerical simulation of variable-density plane jets [ J ]. Journal of Fluid Mechanics, 2006, 546: 153-191.
  • 10Williamson J H. Low-storage Runge-Kutta schemes [ J ]. Journal of Computational Physics, 1980, 35 ( 1 ) : 48-56.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部