期刊文献+

一类非二次微分食饵—捕食系统的脉冲控制 被引量:1

Impulsive Control of a Series of Non 2th-Differential Predator-Prey System
原文传递
导出
摘要 利用脉冲微分方程的比较原理对一个具有功能反应函数为x^(1/2)的食饵—捕食生物模型进行研究.考虑到模型存在的不确定性,研究了捕食者的捕食率不但受食饵的密度大小影响,同时还受捕食者本身的密度影响的生物系统.通过脉冲控制得到了使其渐近稳定到原先不稳定的正平衡点的充分条件,使食饵密度和捕食者密度保持在一个定数附近并给出了生态解释. This paper investigates a predator-prey ecosystem with functional reaction function √x by using comparison theorem of impulsive differential system. Considering the uncertainty of this system, the paper thinks over that the efficiency of predator is affected by not only prey's density but also predator's density. Then we get the sufficient condition for this system's unstable positive equilibrium to asymptotic stability by the impulsive control. And densities of predator and prey individually exist around a constant. Finally, it gives ecological explanation.
机构地区 江苏大学 理学院
出处 《数学的实践与认识》 CSCD 北大核心 2008年第4期93-99,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金重点资助项目(60234010)
关键词 脉冲微分方程 脉冲控制 食饵-捕食系统 impulsive differential system impulsive control predator-prey system
  • 相关文献

参考文献11

二级参考文献20

  • 1荆海英 赵立纯.微生物连续培养模型的溢流量控制[J].生物数学学报,1998,13(5):599-603.
  • 2[1]Boudart M. Kinetics of Chemical Processes[M]. Englewood Cliffs. Nj: Pretice-Hall, 1968.
  • 3[2]Eman T I. O Nekotoryh Mstematiceskih Modeliah Biogeocenozov[J]. Problemy Kibernetiki, Moskva, lzd,1966, 16, 191-202.
  • 4[3]Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific, Singapore, 1989.
  • 5[4]Drumi Bainov, Pavel Simeonov. Impulsive Differential Equations[M]. New York: World Scientific, 1989,57-127.
  • 6[5]Tao Yang. Impulsive Systems and Control. Theory and Applications[M]. Nova Science Publishers, Inc. New York: Huntington, 2001.
  • 7[6]Jitao Sun, Yinping Zhang, QiDi Wu. Impulsive control for the stabilization and synchronization for the Lorenz systems[J]. Phys letters A, 2002, 298(2):153-160.
  • 8[7]Jitao Sun, Yinping Zhang, Wang Lei, et al. Impulsive robust control of uncertain Lur'e systems[J]. Phys letters A, 2002, 304(2):130-135.
  • 9[8]Jitao Sun, Yinping Zhang. Impulsive control of a nuclear spin generator[J]. J of Computational and Appl Math, 2003, 157(1):235-242.
  • 10[9]Jitao Sun, Yinping Zhang, Qidi Wu. Less conservative conditions of stability for impulsive control systems[J].IEEE Trans on Automat Control, 2003, 48(5):829-831.

共引文献45

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部