期刊文献+

一类广义四阶非线性Camassa-Holm方程的行波解 被引量:3

TRAVELLING WAVE SOLUTIONS IN A CLASS OF NONLINEAR FOURTH ORDER VARIANT OF A GENERALIZED CAMASSA-HOLM EQUATION
原文传递
导出
摘要 用动力系统的分支理论研究了一类广义四阶非线性Camassa-Holm方程的动力学行为和行波解,发现方程存在一些孤立波解,周期波解和一些诸如Compacton类型的非光滑行波解.在不同的参数条件下,给出了这些解存在的条件和一些特殊条件下的精确解. By using the bifurcation theory of dynamical systems, it is shown that there exist smooth solitary wave solutions, periodic wave solutions and non-smooth solutions such as compactons for a class of generalized nonlinear fourth order Camassa-Holm equation. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given, and some exact solutions under some special conditions are obtained.
作者 唐亚宁 徐伟
出处 《系统科学与数学》 CSCD 北大核心 2008年第2期180-192,共13页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10332030,10472091)资助课题
关键词 广义的四阶非线性Camassa-Holm方程 孤立波解 周期波解 波的不光滑性 分支理论 Camassa-Holm equation, solitary wave solutions, periodic wave solutions, non-smooth wave, bifurcation theory.
  • 相关文献

参考文献1

二级参考文献15

  • 1Andronov,A.A.et al.,Theory of bifurcations of dynamical systems on a plane [M],John Wiley and Sons,New York,1973.
  • 2Byrd,P.F.& Friedman,M.D.,Handbook of elliptic integrals for engineers and scientists [M],SprigerVerlag,New York,1971.
  • 3Chow,S.N.& Hale,J.K.,Methods of bifurcation theory [M],Springer-Verlag,New York,1982.
  • 4Grasman,J.,Asymptotic methods for relaxation ocillations and applications [M],Springer-Verlag,1987.
  • 5Guckenheimer,J.& Holmes,P.,Dynamical systems and bifurcations of vector fields [M],SpringerVerlag,New York,1983.
  • 6Hirsch,M.,Pugh,C.& Shub,M.,Invariant manifolds [C],Lecture Notes in Math.,583,Springer-Verlag,New York,1976.
  • 7Jacobs,D.,McKinney,B.& Shearer,M.,traveling wave solutions of the modified Korteweg-deVriesBurgers equation [J],J.Dff.Eqs.,116(1995),448-467.
  • 8O'Malley,R.,Singular perturbation methods for ordinary differential equations [M],Springer-Verlag,New York,1991.
  • 9Perko,L.M.,Bifurcation of limit cycles [C],Lecture Notes in Math.,1455(1990),Springer-Verlag,New York,315-333.
  • 10Rosenau,P.& Hyman,J.M.,Compactons:solitons with finite wavelength [J],Phys.Rev.Lett.,70(1993),564-567.

共引文献37

同被引文献19

  • 1Camassa R and Holm D. An integrable shallow water equation with peaked solitons. Phys. Rev Lett., 1993, 71: 1661-1664.
  • 2Camassa R, Holm D and Hyman J. A new integrable shallow water equation. Adv. Appl. Mech., 1994, 31: 1-33.
  • 3Constaintine A and Strauss W. Stability of peakons. Comm. Pure. Appl. Math., 2000, 53: 603-610.
  • 4Himonas A A and Misiolek G. The Cauchy problem for an integrable shallow water equation. Diff. Int. Eq., 2001, 14: 821-831.
  • 5Danchin R. A note on well-posedness for Camassa-Holm equation. J. Diff. Eq., 2003, 192: 429- 444.
  • 6Molinet L. On well-posedness results for Camassa-Holm equation on the line: a survery. J. Non. Math. Phy., 2004, 11: 521-533.
  • 7Guo B L, Tian L X and Yang L E. Camassa-Holm Equation. Beijing: Science Press, 2008.
  • 8Liu Z, Wang R and Jing Z. Peaked wave solutions of Camassa-Holm equation. Chaos, Solitons and Fractals, 2004, 19: 77-92.
  • 9Hakkaev S and Kirchev K. Local well-posedned and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation. Comm. in Partial Diff. Eq., 2005, 30: 761-781.
  • 10Hakkaev S and Kirchev K. On the well-posedned and stability of peakons for a generalized Camassa- Holm equation. Int. J. Non. Sci., 2006, 1: 139-148.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部