期刊文献+

基于样条变换的PLS回归的非线性结构分析 被引量:5

NONLINEAR STRUCTURE ANALYSIS WITH PARTIAL LEAST-SQUARES REGRESSION BASED ON SPLINE TRANSFORMATION
原文传递
导出
摘要 基于样条变换的PLS非线性回归模型既吸取了样条函数分段拟合以适应任意曲线连续变化的优点,又借鉴了偏最小二乘回归方法能够有效解决自变量集合高度相关的技术.针对多元加法模型,从理论和仿真试验的角度分别验证了,对于多个独立自变量对单因变量为非线性关系的数据系统,基于样条变换的PLS回归方法不仅能够有效实现自变量对因变量的整体预测,而且能够提取各维自变量对因变量的单独非线性作用特征,从而确定数据系统内部的复杂非线性结构关系,增强了模型的可解释性. Nonlinear Partial Least-Squares Regression Model based on Spline Transformation not only takes advantages of the characters of spline functions which can locally fit continuous curves properly, but also brings in Partial Least-Squares Regression Method which can effectively solve the problem of high correlations in the set of independent variables. In this paper, according to additive modeling methods both in theory and simulation, it is proven that Nonlinear Partial Least-Squares Regression Method based on Spline Transformation can not only get the exact whole forecasting model, but also successfully extract nonlinear features of each independent variable's effect on the dependent variable when dealing with nonlinear data systems with multi-absolute independent variables for one dependent variable. In this way, acquire the complex nonlinear structures of the data system and an explainable model can be acquired.
出处 《系统科学与数学》 CSCD 北大核心 2008年第2期243-250,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(70371007) 国家杰出青年科学基金(70125003)资助课题
关键词 样条函数 偏最小二乘回归 非线性 特征提取 结构分析 Spline functions, partial least-squares regression, nonlinear, feature extraction, structure analysis.
  • 相关文献

参考文献9

  • 1Wold S, Kettaneh-Wold N and Skagerberg B. Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems, 1989, 7(7): 53-65.
  • 2Wold S. Nonlinear partial least squares modelling Ⅱ spline inner function. Chemometrics and Intelligent Laboratory Systems, 1992, 14(14): 71-84.
  • 3Hoskuldsson A. The H-principle in modeling with applications to chemometrics. Chemometrics and Intelligent Laboratory Systems, 1992, 14(2): 139-154.
  • 4Hoskuldsson A. Quadratic PLS regression. Journal of Chemometrics, 1992, 6: 307-334.
  • 5Durand Jean-Francois. Local polynomial additive regression through PLS and splines: PLSS. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 235-246.
  • 6李岳生.数值逼近.北京:人民教育出版社,1978,65-68,76-132.
  • 7Eubank R L. Spline Smoothing and Nonparametric Regression. New York, Marcel Dekker, 1988.
  • 8Stone C J. Additive regression and other nonparametric models. The Annals of Statistics, 1985, 13(2): 689-705.
  • 9Hastie T and Tibshirani R. Generalized Additive Models. London, Chapman and Hall, 1990.

共引文献6

同被引文献55

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部