期刊文献+

直接甲醇燃料电池气、液相流动数值模拟 被引量:3

SIMULATION OF GAS-LIQUID FLOW IN DIRECT METHANOL FUEL CELLS
下载PDF
导出
摘要 本文建立了直接甲醇燃料电池(DMFC)的二维两相模型,并重点研究阳极的两相流动和质量传递.模型考虑甲醇串流现象,定量计算了在不同电流密度下甲醇串流量的大小及其对电池工作性能的影响;模型中提出求解气、液单相流速的方法,并分别研究气、液流速对物质传递和电池性能的影响。定量分析发现:由甲醇串流产生的寄生电势导致实际开路电压值远低于理论值;在大电流密度下扩散层和催化层内的气相体积分数非常大,阻碍了液相燃料向催化层扩散,成为制约电池性能的关键因素;扩散层和催化层内存在气、液两相的反向流动,且气、液相速度分别有利于排出生成气体并推动液体燃料到达催化层;减小多孔介质的扩散率将削弱对流,恶化电池性能。 A two-dimensional two-phase model considering methanol crossover has been established and the phenomena of two-phase flow and mass transfer in the anode are paid special attention to in this paper. The model takes measures to calculate gas and liquid velocity separately and investigates the effect of gas and liquid velocity on mass transfer and fuel cell's performance. Quantitative investigations show results below: Parasitic voltage resulted from methanol crossover makes the practical open circuit voltage much lower than theoretical value. Since gaseous volume fraction in diffusion layer and catalyst layer is very high under high current density, the generated gas may block the transfer of liquid fuel and become key factor that hinders the performance of fuel cell. The gas-liquid counter flow in diffusion and catalyst layer can help vent the generated CO2 and drive liquid fuel to catalyst layer. Lower permeability of the porous media weakens gas-liquid counter flow and deteriorates the performance of the fuel cell.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2008年第3期451-455,共5页 Journal of Engineering Thermophysics
基金 杰出青年科学基金资助项目(No.50425620;No.50629601)
关键词 甲醇燃料电池 两相模型 气液流动 饱和度 甲醇串流 DMFC two-phase model gas-liquid flow saturation methanol crossover
  • 相关文献

参考文献6

  • 1S F Baxter, V S Battaglia, R E White. Methanol Fuel Cell Model: Anode. J. Electrochem. Soc., 1999, 146 (2): 437-447
  • 2A A Kulikovsky. Two-Dimensional Numerical Modelling of a Direct Methanol Fuel Cell. J. Appl. Electrochemistry, 2000, 30:1005-1014
  • 3H Yang, T S Zhao, Q Ye. In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields. J. Power Sources, 2005, 139:79-90
  • 4Z H Wang, C Y Wang. Mathematical Modeling of Liquid- Feed Methanol Fuel Cells. J. Electrochem. Soc., 2003, 150(4): A508-A519
  • 5J B Ge, H T Liu. A Three-Dimensional Two-Phase Flow Model for a Liquid-Fed Direct Methanol Fuel Cell. J. Power Sources, 2007, 163:907-915
  • 6W W Yang, T S Zhao. A Two-Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCs. Electrochem. Acta, 2007, 52:6125-6140

同被引文献17

  • 1Dyer C K. Fuel cells for portable applications [J]. J. Power Sources, 2002, 106 (1-2): 31-34.
  • 2Liu Fuqiang, Wang Chaoyang. Water and methanol crossover in direct methanol fuel cells-Effect of anode diffusion media [J]. Electrochimica Acta, 2008, 53: 5517-5522.
  • 3Lin Caishun, Wang Tongtao, Ye Feng, et al. Effects of microporous layer preparation on the performance of a direct methanol fuel cell [J]. Electrochemistry Communications, 2008, 10: 255-258.
  • 4Deshlahra Prashant, Mehra Anurag, et al. Evolution of bubble size distribution in baked foods [J]. Journal of Food Engineering, 2009, 93 (2) : 192-199.
  • 5Sasaki S, Iida Y. Effects of the kinematic viscosity and surface tension on the bubble take-off period in a catalase-hydrogen peroxide system[J]. Colloids And Surfaces B: Biointerfaces, 2009, 71 (1):124-127.
  • 6Das A K, Das P K. Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation[J]. Chemical Engineering Science, 2009, 64( 10 ): 2281-2290.
  • 7Fu T T, Ma Y G, Funfschilling D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device [J]. Chemical Engineering Science, 2009, 64 (10) : 2392-2400.
  • 8Yazdian F, Shojaosadati S A, Nosrati M, et al. Investigation of gas properties, design, and operational parameters on hydrodynamic characteristics, mass transfer, and biomass production from natural gas in an external airlift loop bioreactor [J]. Chemical Engineering Science, 2009, 64 (10) : 2455-2465.
  • 9Buwa V V, Gerlach D, Durst F, et al. Numerical simulations of bubble formation on submerged orifices period-1 and period-2 bubbling regimes [J]. Chemical Engineering Science, 2007, 62 (24): 7119-7132.
  • 10Nahra Henry K, Kamotani Y. Prediction of bubble diameter at detachment from a wall orifice in liquid cross-flow under reduced and normal gravity conditions [J]. ChemicalEngineeringScience, 2003, 58:55-69.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部