期刊文献+

关于LCM矩阵整除性的洪绍方猜想的注记(英文) 被引量:2

A note on a conjecture of Hong of divisibility of LCM matrices
原文传递
导出
摘要 称n元正整数集合S={x1,…,xn}为因子链,如果存在n元置换σ,使得xσ(1)|…|xσ(n).作者证明:若S由两个互素的因子链构成,那么在n阶整数矩阵环中,GCD矩阵(S)整除LCM矩阵[S].这部分证明了洪绍方的一个猜想. It is proved in this paper that if S consists of two relatively prime divisor chains, then the GCD matrix on S divides the LCM matrix on S. This confirms partially a conjecture raised by Hong in 2006.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期41-42,共2页 Journal of Sichuan University(Natural Science Edition)
基金 教育部新世纪优秀人才支持计划基金(NCET-06-0785)
关键词 因子链 GCD矩阵 LCM矩阵 divisor chain, GCD matrix, LCM matrix
  • 相关文献

参考文献5

  • 1Bourque K, Ligh S. On GCD and LCM matrices[J]. Linear Algebra Appl, 1992, 174: 65.
  • 2Hong S. On the factorization of LCM matrices on gcdclosed sets[J]. Linear Algebra Appl, 2002, 345: 225.
  • 3Zhao J, Hong S, Liao Q, et al. On the divisibility of power LCM matrices by power GCD matrices [ J ]. Czechoslovak Math J, 2007, 57. 115.
  • 4Hong S. Factorization of matrices associated with classes of arithmetical functions[J]. Colloq Math, 2003, 98: 113.
  • 5Hong S. Nonsingularity of matrices associated with classes of arithmetical functions on lcm-closed sets[J]. Linear Algebra Appl, 2006, 416: 124.

同被引文献37

  • 1谭千蓉,林宗兵,刘浏.两个互素因子链上的幂GCD矩阵的行列式与幂LCM矩阵的行列式的整除性[J].四川大学学报(自然科学版),2009,46(6):1581-1584. 被引量:6
  • 2Bourque K,Ligh S.On GCD and LCM matrices[J].Linear Algebra Appl,1992,174:65.
  • 3Bourque K,Ligh S.Matrices associated with classes of arithmetical functions[J].Number Theory,1993,45:367.
  • 4Bourque K,Ligh S.Matrices associated with arithmetical functions[J].Linear Multilinear Algebra,1993,34:261.
  • 5Cao W.On Hongs conjecture for power LCM matrices[J].Czechoslovak Math,2007,57:253.
  • 6Codeca P,Nair M.Calculating a determinant associated with multilplicative functions[J].Boll Unione Mat Ital Sez B Artic Ric Mat,2002,5(8):545.
  • 7Feng W,Hong S,Zhao J.Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets[J].Discrete Math,2009,309:2627.
  • 8Haukkanen P,Korkee I.Notes on the divisibility of LCM and GCD matrices[J].International J Math and Math Science,2005,6:925.
  • 9He C,Zhao J.More on divisibility of determinants of LCM matrices on GCD-closed sets[J].Southeast Asian Bull Math,2005,29:887.
  • 10Hilberdink T.Determinants of multiplicative Toeplitz matrices[J].Acta Arith,2006,125:265.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部