期刊文献+

图像情感特征的分类与提取 被引量:14

Classification and extraction of image affective features
下载PDF
导出
摘要 分析了图像情感特征的特点并提出三层结构的分类方法,以彩色自然风景图片为例,选取了典型的情感特征,采用排序调查法收集用户评价,并通过多元线性回归方法建立图像颜色特征与用户评价的映射关系,用于彩色自然风景图片情感特征的自动提取。最后通过实验验证了三层结构的合理性,以及所建立映射关系对于正确预测彩色自然风景图片情感特征的有效性。 The characteristics of image affective features were analyzed and a method was provided to divide affective features into 3 levels. Typical affective features for colorful natural scenes were chosen and an investigation was carried out to collect users' impressions on images. Then, based on color features and users' evaluations, the mapping between color and subjective impressions was established by multiple linear regressions, which could be used to extract affective features automatically. Finally, the validity of 3 levels was verified. Besides, the mapping is also testified effective to forecast and index the affective features correctly.
作者 黄崑 赖茂生
出处 《计算机应用》 CSCD 北大核心 2008年第3期659-661,668,共4页 journal of Computer Applications
关键词 风景图片 情感特征 颜色直方图 多元线性回归 natural scenes affective features color histogram multiple linear regression
  • 相关文献

参考文献12

  • 1HAYASHI T, HAGIWARA M. An image retrieval system to estimate impression words from images using a neural network[ C]// IEEE International Conference on Systems, Man, and Cybernetics-Computational Cybernetics and Simulation. New York: IEEE, 1997 (1): 150-155.
  • 2KURODA K, HAGIWARA M. An image retrieval system by impression words and specific object names-IRIS[ J]. Neurocomputing, 2002(43) : 259 -276.
  • 3COLOMBO C, Del BIMBO A, PALA P. Semantics in visual information retrieval[ J]. IEEE Multimedia, 1999, 6(3) : 38 - 53.
  • 4BIANCHI-BERTHOUZE N. Kansei-mining: identifying visual impressions as patterns in images[ C]// Proceedings-Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Piscataway: IEEE, NJ, 2001: 2183 - 2188.
  • 5CHO S-B. Emotional image and musical information retrieval with interactive genetic algorithm[ J]. IEEE, 2004, 92(4) : 702 - 711.
  • 6高永英,章毓晋,罗云.基于目标语义特征的图像检索系统[J].电子与信息学报,2003,25(10):1341-1348. 被引量:32
  • 7王慧芳,刘琳.图像检索技术中情感计算模型研究[J].天津师范大学学报(自然科学版),2006,26(1):66-69. 被引量:3
  • 8KURODA K, HAGIWARA M. An image retrieval system by impression words and specific object names-IRIS [ J]. Neurocomputing, 2002 (43) : 259 - 276.
  • 9王上飞,陈恩红,王胜惠,王煦法.基于情感模型的感性图像检索[J].电路与系统学报,2003,8(6):48-52. 被引量:23
  • 10KOBAYASHI H, OTA S. The semantic network of KANSEI words [ C]// Proceedings of IEEE International Conference on Systems Man and Cybernetics. [ S. l. ] : IEEE, 2000:690 -694.

二级参考文献30

  • 1王慧芳,刘琳.图像检索技术中情感计算模型研究[J].天津师范大学学报(自然科学版),2006,26(1):66-69. 被引量:3
  • 2[美]KT斯托曼著 张燕云译.情绪心理学[M].沈阳:辽宁人民出版社,1987..
  • 3Y Y Gao, Y J Zhang, Object classification using mixed color feature, Proc ICASSP, Istanbul,2000, 4: 2003-2006.
  • 4S G Mallat, Multifrequency channel decompositions of images and wavelet models, IEEE Trans on ASSP, 1989, ASSP-37(12): 2091-2110.
  • 5Y Y Gao, Y J Zhang, N S Merzlyakov, Semantic-based image description model and its implementation in image retrieval, Proc of ICIG'2000, Tianjin, 2000, 657-660.
  • 6G Ciocca, R Schettini, Using a relevance feedback mechanism to improve content-based image retrieval, Proc of 3rd VISUAL'99, Amsterdam, 1999, 107-114.
  • 7Y Rui, T S Huang, S Mehrotra, Relevance feedback techniques in interactive content-based image retrieval, 1998, SPIE 3312: 25-34.
  • 8D Z Hong, J K Wu, S S Singh, Refining image retrieval based on contcxt-driven method,1999, SPIE 3656: 581-593.
  • 9A Jaimes, S F Chang, Model-based classification of visual information for content-based retrieval, SPIE 3656: 402-414.
  • 10E J Pauwels, G Frederix, Finding salient regions in images: Nonparametric clustering for image segmentation and grouping, Computer Vision and Image Understanding, 1999, 75(1): 73-85.

共引文献49

同被引文献191

引证文献14

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部