期刊文献+

求解Hamming距离下单位型单发点树型网络最短路改进问题的算法 被引量:1

Algorithms for Solving the Unit Type Shortest Path Improvement Problems under Hamming Distance in Single-source Arborescence
下载PDF
导出
摘要 给出了求解两类特殊的Hamming距离下单位型单发点树型网络最短路改进问题的多项式时间算法,并研究了一般树型网络下该问题的性质.解决了Hamming距离下逆问题(改进问题)中的部分问题,有助于设计出更多的求解Hamming距离下单位型树型网络最短路改进问题的算法. In this paper, we gave two polynomial-time algorithms for solving two special unit type shortest path improvement problems under Hamming distance in single-source arborescence, and we studied some properties of the general problem. This paper answered some open problems given in the review paper on the inverse (improvement)problem under Hamming distance. We hope this paper could be useful for designing some more algorithms for the unit type shortest path improvement problems under Hamming distance in arborescence.
作者 张斌武 王勤
出处 《河海大学常州分校学报》 2007年第4期1-4,共4页 Journal of Hohai University Changzhou
基金 国家自然科学基金资助项目(10601051)
关键词 HAMMING距离 最短路改进问题 NP-困难 多项式时间算法 Hamming distance the shortest path improvement problem NP- hard polynomial- time algorithm
  • 相关文献

参考文献6

  • 1Heuberger C. Inverse optimization : A survey on problems, methods, and results [J]. Journal of Combinatorial Optimization, 2004,8(3) : 329-361.
  • 2He Yong,Zhang Binwu,Yao Enyu. Weighted inverse minimum spanning tree problems under Hamming distance [J]. Journal of Combinatorial Optimization, 2005,9 ( 1 ) : 91-100.
  • 3Duin C W,Volgenant A. Some inverse optimization problems under the Hamming distance [J]. European Journal of Operational Research, 2006,170 : 887-899.
  • 4Zhang Binwu,Zhang Jianzhong,Qi Liqun. The shortest path improvement problem under Hamming distance [J]. Journal of Combinatorial Optimization, 2006,12 (4) : 351-361.
  • 5Zhang Binwu ,Zhang Jianzhong,He Yong. The center location improvement problem under Hamming distance[J]. Journal of Combinatorial Optimization, 2005,9 (2) : 187-198.
  • 6张斌武,何勇.哈明距离下的网络逆问题研究综述[J].高校应用数学学报(A辑),2004,19(B12):503-509. 被引量:7

二级参考文献11

  • 1Burton D, Toint Ph L. On the use of an inverse shortest paths problem [J]. Mathematical Programming, 1992,53:45-61.
  • 2Xu S,Zhang J. An inverse problem of the weighted shortest path problem[J]. Japan J Indust Appl Math, 1995,12 : 47-59.
  • 3Zhang J, Liu Z. Calculating some inverse linear programming problem [ J]. Journal of Computational and Applied Mathematics, 1996,72 : 261-273.
  • 4Yang C,Zhang J ,Ma Z. Inverse maximum flow and minimum cut problem[J]. Optimization,1997,40:147-170.
  • 5Ahuja R K,Orlin J B. A faster algorithm for the inverse spanning tree problem[J]. Journal of Algorithms, 2000,34:177-193.
  • 6Heuberger C. Inverse optimization:A survey on problems, methods, and results [J]. Journal of Combinatorial Optimization, 2004,8 (3):329-361.
  • 7He Y, Zhang B W, Yao E. Weighted inverse minimum spanning tree problems under Hamming distance[J]. Journal of Combinatorial Optimization, 2005,9 (1):91-100.
  • 8He Y, Zhang B W, Zhang J. Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance[J]. Journal of Global Optimization,to appear.
  • 9Zhang B W,Zhang J,He Y. The center location improvement problem under Hamming distance[J]. Journal of Combinatorial optimization,2005,9: 187-198.
  • 10Zhang J ,He Y ,Zhang B W. The shortest path improvement problem under Hamming distance[Z].Working Paper, City University of Hong Kong ,Hong Kong ,China, 2004.

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部