期刊文献+

BP神经网络用于饮用水管网细菌总数预测 被引量:3

Prediction of HPC in Drinking Water Distribution Networks by BP Neural Network
下载PDF
导出
摘要 为保障饮用水管网细菌学水质安全,并实现对细菌总数指标的预测,选定北方某市实验小区饮用水管网为研究对象,应用Matlab软件建立BP神经网络的细菌总数预测模型.结果表明,BP神经网络方法能较好地模拟复杂系统,模型精度较高;同时,建立BP神经网络模型,对水质指标间的相互作用进行模拟,拟合效果较好,并针对该实验管网给出了某些指标的限值。 To ensure the security of bacteria water quality in drinking water distribution network, and make prediction on the index of total bacteria counts, heterotrophic plate counts ( HPC ) prediction model of a distribution network of an experimental area in a northern city of China was constructed by Matlab software with the methods of back propagation( BP ) neural network. The result shows that the method of BP neural network models complex system well with high precision. At the same time, BP neural network model was constructed to simulate the correlation of parameters and HPC. The effect of the simulation was good and the limit value of some parameters were provided.
作者 吴卿 赵新华
出处 《天津大学学报》 EI CAS CSCD 北大核心 2007年第11期1382-1386,共5页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(50478086) 国家"十五"重大科技专项资助项目(2002AA601120) 天津市科技发展计划资助项目(033113111)
关键词 饮用水 细菌总数 管网 数学模型 BP神经网络 drinking water heterotrophic plate counts distribution network mathematics model back propagation neural network
  • 相关文献

参考文献8

  • 1Ozdemir Osman N, Ucak Alper. Simulation of chlorine decay in drinking-water distribution systems[J]. Journal of Environmental Engineering,2002,128(1):31-39.
  • 2方伟,许仕荣,徐洪福,邓汇,尤作亮.城市供水管网水质化学稳定性研究进展[J].中国给水排水,2006,22(14):10-13. 被引量:26
  • 3Kawai Mako, Matsutera Eiichi, Kanda Hisashi, et al. 16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis[J].Appl Environ Microbiol,2002,68(2):699-704.
  • 4中国环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
  • 5Zhang Yuanzhi, Pulliainen Jouni, Koponen Sampsa, et al. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data[J].Remote Sensing of Environment,2002,81(2):327-336.
  • 6Michael Nelson, Tim Hill, William Remus, et al. Time series forecasting using neural networks: Should the data be deseasonalized first?[J].Journal of Forecasting, 1999, 18(3):359-367.
  • 7Ashu Jain, Ashish Kumar Varshney, Umesh Chandra Joshi. Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks[J].Water Resources Management, 2001, 15(5):299-321.
  • 8Mark W, Lecheballier T M. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water[J].Appl Environ Microbial,1981,42(1):159-167.

二级参考文献9

共引文献25

同被引文献50

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部