期刊文献+

基于最大Lyapunov指数的改进预测模型及其在城市用水量短期预测中的应用 被引量:6

Improved Predicting Model Based on the Largest Lyapunov Exponent and Its Application to Short-Term Forecasting for Urban Water Consumption
下载PDF
导出
摘要 参照计算Lyapunov指数的Wolf方法,考虑预测中心点与邻近点和上一个演化点的夹角,对混沌理论基于最大Lyapunov指数的预测方法进行了改进.通过对城市用水量短期预测的实例研究,将改进算法与传统算法进行比较.结果表明,与传统算法相比,改进算法的预测精度在整个预测周期内提高了10.2%,在最大可预测时间尺度内提高了1.1%. According to the Wolf algorithm, the traditional predicting method based on the largest Lyapunov exponent was developed, in which the angle formed by the center point with the adjacent point and the evolutionary point was considered. The improved method was compared with the traditional method in the case of short-term forecasting for urban water consumption. Results show that the predicting precision of the improved method is 10.2% up on that of the traditional method in the whole forecasting period, and 1.1% in the forecasting time scale maximum.
作者 赵鹏 张宏伟
出处 《天津大学学报》 EI CAS CSCD 北大核心 2007年第12期1500-1506,共7页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(50578108)
关键词 混沌 最大LYAPUNOV指数 改进算法 城市用水量 短期预测 chaos the largest Lyapunov exponent improved algorithm urban water consumption short-term forecasting
  • 相关文献

参考文献18

  • 1Aly A H, Wanakule N. Short-term forecasting for urban water consumption[ J]. Journal of Water Resources Planning and Management, 2004,130(5) :405-410.
  • 2El-Keib A, Ma X, Ma H. Advancement of statistical based modeling techniques for short-term load forecasting [ J ]. Electric Power Systems Research, 1995,35 (1) : 51-58.
  • 3Al-Kandari A M, Soliman S A, El-Hawary M E. Fuzzy shortterm electric load forecasting [ J]. Electrical Power and Energy Systems ,2004,26(2) : 111-122.
  • 4Kim Tae-Woong, Valdes J B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks[J]. Journal of Hydrologic Engineering, 2003,8(6): 319-328.
  • 5Coppola E Jr, Szidarovszky F, Potdton M, et al. Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping,and climate conditions[ J]. Journal of Hydrologic Engineering, 2003,8(6) :348-340.
  • 6Liu Hongbo B, Zhang Hongwei, Study on artificial neural network forecasting method of water consumption per hour [ J ]. Transaction of Tianjin University ,2001,17(4) :233-237.
  • 7Ashu J, Ashish K V. Short-term water demand forecasting modeling at IIT kanpur using artifitial neural networks[ J]. Water Resour Mgmt, 2001,15 : 299-231.
  • 8柳景青.用水量时间观测序列中的分形和混沌特性[J].浙江大学学报(理学版),2004,31(2):236-240. 被引量:10
  • 9邓兰松,沈菲.非线性时序的混沌特性分析与预测[J].天津大学学报(自然科学与工程技术版),2004,37(11):1022-1025. 被引量:4
  • 10丁涛,周惠成.混沌时间序列局域预测模型及其应用[J].大连理工大学学报,2004,44(3):445-448. 被引量:7

二级参考文献27

  • 1刘洪,李必强.基于混沌吸引子的时间序列预测[J].系统工程与电子技术,1997,19(2):23-28. 被引量:29
  • 2中国水利部.水文情报预报规范[M].北京:中国水利水电出版社,2000.11-12.
  • 3FRASER A M,SWINNEY H L. Independent coordinates for strange attractors from mutual information [] Phys Rev:,1986,33:134-1140.
  • 4HENRY D I,ABARBANEL N M,RABINOVICH M I,et al. Distribution of mutual information [] Phys Lett:,2001,281:68-373.
  • 5GRASSBERGER P,PROCACCIA I. Measuring the strangeness of strange attractors [] Physica D,1983,9:89-208.
  • 6SANGOYOMI T B. Nonlinear dynamics of the Great Salt Lake:imensi
  • 7HENRY D L,ABARBANEL N M. The analysis of observed chaotic data in physical systems [J]. Rev of Modern Phys,1993,65(4):331-1392.
  • 8KIM H S,EYKHOLT R,SALAS J D. Nonlinear dynamics,delay times,and embedding windows [J]. Physica D,1999,127:8-60.
  • 9FARMER J D,SIDOROWICH J J. Predicting chaotic time series [J]. Phys Rev Lett,1987,59(8):45-848.
  • 10JAYAWARDENA A W,LI W K,XU P. Neighbourhood selection for local modeling and prediction of hydrological time series [J]. J of Hydrology,2002,258:0-57.

共引文献18

同被引文献59

引证文献6

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部