期刊文献+

时间尺度上三点边值问题的拟线性方法 被引量:2

Quasilinearization Method and Three Points Boundary Value Problems on Time Scales
下载PDF
导出
摘要 研究了在时间尺度上非线性二阶三点边值问题的1种有效求解方法.利用拟线性方法构造了2个解序列,它们分别从左右两侧收敛于所求解.而且,收敛速度是二阶的. The method of quasilinearization is applied to the nonlinear second order dynamic equations with the three point boundary conditions on time scales. Two sequences are constructed which can converge uniformly to the unique solution of the three point boundary value problems. The convergence of these sequences are quadratic.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2008年第1期1-3,21,共4页 Journal of Hebei University(Natural Science Edition)
基金 教育部重点科研项目(207014) 河北省自然科学基金资助项目(A2006000941)
关键词 时间尺度 拟线性方法 三点边值问题 上下解 收敛 time scales quasilinearization method three point boundary value problems lower and upper solutions convergence
  • 相关文献

参考文献1

二级参考文献19

  • 1Bohner, M., Peterson, A. Dynamic equations on time scales: An introduction with applications. Birkhauser,Boston, 2001
  • 2Bohner, M., Peterson, A. Advances in dynamic equations on time scales. Birkhauser, Boston, 2002
  • 3Guo, Y.P, Shan, W.R., Ge, W.G. Positive solutions for second-order m-point boundary value problems.Journal of Computational and Applied Mathematics, 151:415-424 (2003)
  • 4He, Z.M. Existence of two solutions of m-point boundary value problem for second order dynamic equations on time scales. J. Math. Anal Appl., 296:97-109 (2004)
  • 5Hilger, S. Analysis on measure chains-A unified approach to continuous and discrete calculus. Results Math., 18:18-56 (1990)
  • 6Kong,L.J., Kong, Q.K. Multi-point boundary value problems of second-order differential equations (I).Nonlinear Analysis, 58:909-931 (2004)
  • 7Ma, R.Y. Positive solutions for nonhomogeneous m-point boundary value probleins. Computers and Mathematics with Applications, 47:689-698 (2004)
  • 8Ma, R.Y. Existence theorems for a second order m-point boundary value problem. J. Math. Anal. Appl.,211:545-555 (1997)
  • 9Ma, R.Y, Positive solutions for second order three-point boundary value problems, Appl, Math. Left.,14(1): 1-5 (2001)
  • 10Sun, H.R., Li, W.T. Positive solutions for nonlinear three-point boundary value problems on time scales.J. Math. Anal Appl., 299:508-524 (2004)

共引文献4

同被引文献9

  • 1Pei-guang Wang,Ying Wang.Existence of Positive Solutions for Second-Order m-Point Boundary Value Problems on Time Scales[J].Acta Mathematicae Applicatae Sinica,2006,22(3):457-468. 被引量:5
  • 2王培光,王颖.时间尺度上二阶动力方程三点边值问题解的存在性[J].数学学报(中文版),2007,50(3):701-706. 被引量:8
  • 3TOLSTONOGOV A. Differential Inclusions in a Banach Space[M]. Dordrecht:Kluwer Academic Publishers,2000.
  • 4BHASKAR T, LAKSMIKANTHAM V. Set differential equations and flow invariance[J]. Appl Anal, 2003,82 : 357-368.
  • 5BHASKAR T, LAKSMIKANTHAM V. Lyapunov stability for set differential equations[J]. Dynam Systems Appl, 2004, 13:1-10.
  • 6LAKSMIKANTHAM V, LEELA S,VATSALA A. Interconneetion between set and fuzzy differential equations[J]. Nonlinear Anal, 2003,54 : 351-360.
  • 7RADSTROM H. An embedding theorem for space of convex sets[J]. Proc AM Math Soc, 1952,3:165-169.
  • 8LAKSMIKANTHAM V,VATSALA A. Set differential equations and monotine flows[J]. Nolinear Dyn Sys, 2003,3(2): 151-161.
  • 9LAKSMIKANTHAM V, VATSALA A. Generalized quasilinearization for nonlinear problems[M]. Dordrecht:K|uwer Academic Publishers, 1998.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部