期刊文献+

基于模糊-粗糙模型的逼近精度分类规则提取策略

Extracting strategy of impend precision classification rule based on fuzzy-rough set
原文传递
导出
摘要 为了处理具有连续属性的决策系统,利用模糊理论与粗糙理论在处理不确定性问题方面的差异性,提出一种基于模糊-粗糙模型的逼近精度分类规则提取策略.首先利用模糊π函数对决策系统中的连续属性构造三个模糊参数进行模糊化,从而确定条件属性的模糊区域;再根据模糊相似关系构造模糊相似矩阵,然后基于模糊等价类划分的概念,提出了利用逼近精度近似度量的数据挖掘方法进行属性约减,最后应用实例说明如何在决策表中发现分类规则.实验结果表明此方法挖掘出的规则简练且合理可靠. In order to dealing with the decision system with successive attributes, an abstracting strategy of impend precision classification rule is presented based on the difference between fuzzy and rough set theories. Firstly, the fuzzy region of conditional attribute can be determined while the successive attributes in decision system are fuzzied through constructed with three fuzzy parameters by fuzzy function π and then, relying on fuzzy analogy relation to construct fuzzy analogy matrix and basing on the conception of fuzzy equating classification, a new attributes reduction method of data mining based on impend precision approximation measurement is expounded. Finally, an example on how to discover classification rules in decision table is applied and the result of experimentation shows that the rules are not only simple but also rational.
作者 张文宇
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第2期68-73,共6页 Systems Engineering-Theory & Practice
基金 陕西省教育厅专项基金(05JK092) 陕西省西安市工业攻关项目专项基金(YF07025)
关键词 模糊集 粗糙集 逼近精度 隶属函数 分类规则 fuzzy set rough set impend precision membership function classification rule
  • 相关文献

参考文献12

  • 1石峰,娄臻亮,张永清,陆金桂.基于模糊-粗糙集模型的一种归纳学习方法[J].上海交通大学学报,2002,36(7):920-924. 被引量:12
  • 2印勇,孙如英.基于模糊粗糙集的一种知识获取方法[J].重庆大学学报(自然科学版),2006,29(5):108-111. 被引量:4
  • 3何亚群,胡寿松.一种基于粗糙-模糊集集成模型的决策分析方法[J].控制与决策,2004,19(3):315-318. 被引量:21
  • 4Agrawal R,et al. Mining association rules between sets of items in large database[J]. Proc ACM SIGMOD Intel Conf. Management of Data ,Washington DC, 1993,3:207 - 226.
  • 5Cheung D W, et al. Maintenance of discovered association rules in large database: An incremental updating technique[ C ]//In Procedings of the 12th International Conference on Data Engineering, New Orleans, 1995 :106- 114.
  • 6Wang J, Tao Q. Rough Set Theory and Statistical Learning Theory [ M ]. Lu, R.Z., editors, Knowledge Science and Computing Science. Beijing:Tsinghua University Press, 2003:49 - 51.
  • 7Sankar K, Pabitra M. Case generation : A rough fuzzy approach[ J ]. Machine Learning, 2003,38 (3) .-256 - 286.
  • 8Han J, Fu Y. Discovery of multiple-level association rules from database[J]. Inter. J of Computational Intelligence, 1995,11 (2) : 323 - 338.
  • 9Lakshmanan L V S. Optimization of constrained frequent set queries[ C ]//Proc. 1999 ACM-SIGMOD Conf on Management of Data, Philadelphia, PA : 1999 : 228 - 236.
  • 10Pal S, Dillon T. Soft Computing in Case Based Reasoning[ M ]. London:Springer Verlag ,2000.

二级参考文献6

  • 1赵汝怀.弗晰聚类的编网法[J].西安交通大学学报,1980,14(4):29-36.
  • 2曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1996..
  • 3KOHONEN T.28(8)Self-organization and associative memory [M].Berlin:Spinger,1988.
  • 4RICHARD JENSEN,QIANG SHEN.Semantics-Preserving Dimensionahity Reduction Rough and Fuzzy-Rough-Based Approaches[J].IEEE Transactions on Knowledge and Data Eng ineering,2004,16(12):1 457-1 471.
  • 5武妍,施鸿宝.一种保证隶属度函数完备性和模糊集合语义一致性的学习方法[J].计算机研究与发展,1999,36(9):1080-1085. 被引量:5
  • 6陈奇南,梁洪峻.模糊集和粗糙集[J].计算机工程,2002,28(8):138-140. 被引量:23

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部