摘要
一个图的树宽是使图成为一个k-树的子图的最小整数k,本文考虑了顶点数为m的任意连通图G与顶点数为n的k-连通的偏k-树的乘积图的树宽,首先利用对已知结构图进行树分解的方法,确定了二者乘积图树宽下界,然后结合乘积图树宽的上界,得出了在满足顶点数n≥mk的条件下二者乘积图树宽表达式。
The tree-width of a graph G is the minimum integer k subgraph of a k-tree.This paper studies the tree-width of the product of a connected graph and a k-connected partial k-tree.First,using tree-decomposition,the lower bounds of the tree-width of this graph is determined.Then using the known result of tree-width of product graph,its upper bounds is determined.So the tree-width of this graph is obtained.
出处
《河南科技大学学报(自然科学版)》
CAS
2008年第1期78-79,共2页
Journal of Henan University of Science And Technology:Natural Science
基金
河南科技大学科研基金项目(2005ZD006)
(2006zy026)
关键词
树宽
连通图
乘积图
偏k-树
Tree-width
Connected graph
Product graph
Partial k-tree