摘要
A new parameter estimation algorithm is proposed for parametric identification of a parallel manipulator driven by pneumatic muscles with redundancy. Due to the special physical properties of the parallel manipulator studied, the regression model for parametric identification is characterized by multieollinearity, which will result in unreliable and inaccurate parameter estimations with large eovarianee if the conventional parameter estimation algorithm based on single error minimizing criterion is used. To improve the quality of parameter estimation and achieve high precise posture trajectory tracking control of the parallel manipulator, a new parameter estimation algorithm based on composite error minimizing criterion is developed in need of theoretical contractive forces of pneumatic muscles. The experimental results indicate that the proposed algorithm integrated with adaptive robust control could provide reliable parametric identification and greatly enhance the control accuracy in the trajectory tracking control of the parallel manipulator, and that the variation of known theoretical contractive forces of pneumatic muscles has slight influence on the control performance.
A new parameter estimation algorithm is proposed for parametric identification of a parallel manipulator driven by pneumatic muscles with redundancy. Due to the special physical properties of the parallel manipulator studied, the regression model for parametric identification is characterized by multieollinearity, which will result in unreliable and inaccurate parameter estimations with large eovarianee if the conventional parameter estimation algorithm based on single error minimizing criterion is used. To improve the quality of parameter estimation and achieve high precise posture trajectory tracking control of the parallel manipulator, a new parameter estimation algorithm based on composite error minimizing criterion is developed in need of theoretical contractive forces of pneumatic muscles. The experimental results indicate that the proposed algorithm integrated with adaptive robust control could provide reliable parametric identification and greatly enhance the control accuracy in the trajectory tracking control of the parallel manipulator, and that the variation of known theoretical contractive forces of pneumatic muscles has slight influence on the control performance.
基金
supported by National Natural Science Foundation of China (No. 50775200).