期刊文献+

一类特殊的无限非正则p-群 被引量:1

A Special Class of Infinite Irregular p-Groups
下载PDF
导出
摘要 利用有限正则p-群和局部幂零群的理论,得到:如果G是可解的非正则p-群,且G的每一个无限真子群是正则的,那么群G是秩为p-1的可除阿贝尔群被循环群的扩张. Using theory of finite regular p-groups and locally nilpotent groups, we get that if G is solu- ble and each proper infinite subgroupsis regular, and G is an extension of divisible abelian p-group of rank p--1 by a cyclic p-group.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2008年第1期25-27,共3页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(10771172) 重庆市自然科学基金(2005BB8096) 西南大学青年基金(20710406)资助项目
关键词 正则P-群 局部幂零群 拟循环p-群 可除阿贝尔P-群 regular p-groups locally nilpotent p-groups quascyclic p-groups divisible Abelian p- groups
  • 相关文献

参考文献8

  • 1Hall P. A Contribution to the Theory of Groups of Prime Power Order[J]. Proc London Math Soc,1933, 36(2):29-95.
  • 2Huppert B. Finite Group[M]. Berlin: Springer-Verlag,1967.
  • 3Mann A. Regular p-Groups[J]. Israel J Math,1971, 10(4) :471-477.
  • 4Mann A. Regular p-Groups[J]. Israel J Math,1973, 14(3) :294-303.
  • 5吕恒,张志让,陈贵云.无限正则p-群[J].数学年刊(A辑),2007,28(6):827-834. 被引量:2
  • 6Menegazzo F, Stonhewer S. On the Automorphism Group of a Nilpotent p-Group[J]. J London Math Soc, 1985,31 (2): 272-276.
  • 7Alperin J L. On a Special Class of Regular p-Groups[J]. Tran Amer Math Soc , 1963,106 : 77-99.
  • 8徐明曜.有限群导引[M].北京:科学出版社,2001.

二级参考文献9

  • 1Hall P., A contribution to the theory of groups of prime power order [J], Proc. London Math. Soc., 1933, 36(2):29-95.
  • 2Huppert B., Finite Group [M], New York: Springer-Verlag, 1967, 393 -396.
  • 3Ol'sanskii A. Ju, Infinite groups with cyclic subgroups [J], Dokl. Akad. Nauk SSSR, 1979, 245(4):785-787.
  • 4Robinson D. J. S., Finiteness Condition and Generalied Soluble Groups Ⅱ[M], New York: Springer-Verlag, 1972:125-126.
  • 5L/i Heng, Duan Zeyong and Chen Guiyun, On hypercentral group G with │G : n(G)│ < ∞[J], Commun. in Algebra, 2006, 34(5):1803-1810.
  • 6Mann A., Regular p-groups [J], Israel J. Math., 1971, 10(4):471-477.
  • 7Mann A., Regular p-groups [J], Israel J. Math., 1973, 14(3):294-303.
  • 8Menegazzo F. and Stonehewer S., On the automorphism group of a nilpotent p-group [J], J. London Math. Soc., 1985, 31(2):272-276.
  • 9Robinson D. J. S., A Course in the Theory of Groups [M], New York: Springer-Verlag, 1980, 106-107.

共引文献37

同被引文献6

  • 1Hall P. A contribution to the theory of groups of prime power order[J]. Proc London Math Soc ,1933,36(2) : 29-95.
  • 2Huppert B. Finite Group[M]. Berlin: Springer-Verlag, 1967.
  • 3Robinson D J S. A Course in the Theory of Groups [M]. New York : Springer-Verlag, 1980.
  • 4Zaitsev D I, Onishchuk V A. On locally nilpotent groups with a cen-tralizer satisfying a niteness condi- tion[J]. Uhr Mat Zh ,1991,43(8) :1084-1087.
  • 5Casolo C. On the structure of groups with all sub- groups subnormal[J]. J Group Theory, 2002,5 : 294- 300.
  • 6吕恒,张志让,陈贵云.无限正则p-群[J].数学年刊(A辑),2007,28(6):827-834. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部