期刊文献+

光正交码在LDPC码中的应用性能分析

Performance Analysis of LDPC Codes Using a Optical Orthogonal Structure
下载PDF
导出
摘要 主要分析LDPC(低密度奇偶校验)码H矩阵不同构造的译码性能,通过在4/5码率、990码长、AWGN(加性高斯白噪声)信道、BP(置信传播)译码算法条件下,先采取随机构造的方式进行仿真分析,然后将光正交码的概念引入H矩阵的设计,并进行相应的改进,通过计算机仿真,发现通过光正交码改进H矩阵构造设计的LDPC码不仅性能优于随机构造的LDPC码,而且还具有循环结构。 This paper analyses some different structures of H matrix for LDPC codes. For a rate 4/5 LDPC codes with block length 990 simulated on AWGN channel using belief propagation, first we analysis the performance of LDOC using random structure, then construct LDPC using a optical orthogonal structure and optimal the structure. Simulation results show that OOC-LDPC codes outperform random codes, and have quasi-cyclic structure.
作者 蔡嵩 于奇
出处 《电子工程师》 2008年第2期46-49,共4页 Electronic Engineer
关键词 LDPC H矩阵 光正交码 BP算法 low-density parity-check ( LDPC ) code H matrix optical orthogonal code ( OOC ) belief prop-agation
  • 相关文献

参考文献9

  • 1GALLAGER R G, Low-density parity-check codes [ M ]. Cambridge, MA, USA : M1T Press, 1963.
  • 2MACKAY D J C. Good error correcting codes based on very sparse matrices [ J ]. IEEE Trans on Information Theory, 1999, 45(2) : 399-431.
  • 3RICHARDSON T J, URBANKE R. The capacity of low-density: parity-check codes under message-passing decoding [ J ]. IEEE Trans on Information Theory, 2001,47(2) : 599-618.
  • 4RICHARDSON T, SHOKROLLAHI A, URBANKE R. Design of capacity-approaching irregular low-density parity check codes[J]. IEEE Trans on Information Theory, 2001,47(2) : 619-637.
  • 5MACKAY D J C, NEAL R M. Near Shannon limit performance of low-density parity-check codes [ J ]. Electronic Letters, 1996, 32(18): 1645-1646.
  • 6FOSSORIER M P C. Quasicyclic low-density parity-check codes from circulant permutation matrices [ J ]. IEEE Trans on Information Theory, 2004, 50(8) : 1788-1793.
  • 7SALEHI J A, CHUNG F K, WEI V K. Optical orthogonal codes design, analysis and applications [ J ]. IEEE Trans on Information Theory,1989,35(3 ) :595-604.
  • 8RYOH Fuji-hara,YING Miao. Optical orthogonal codes: their bounds and new optimal constructions [ J ]. IEEE Trans on Information Theory, 2000,46 ( 11 ) :2396-3004.
  • 9GE Gennian, YIN Jianxing. Constructions for optimal( v,4,1 ) optical orthogonal codes. IEEE Trans on Information Theory,2001,47(11): 2998-3004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部