期刊文献+

固体氧化物燃料电池—燃气轮机混合发电系统建模与控制的研究现状与进展 被引量:11

Research Status and Advances in Modeling and Control of Solid Oxide Fuel Cell Gas Turbine Hybrid Generation System
下载PDF
导出
摘要 固体氧化物燃料电池—燃气轮机(Solid oxide fuel cell-gas turbine,SOFC-GT)的混合发电系统是未来高效、清洁的发电技术之一,混合系统的建模、优化与控制方面的研究对于系统集成和商业化运行具有重要意义。通过论述国内外在SOFC单电池机理、半经验模型、电池组模型、混合系统模型,以及系统动态模型与分布式发电系统控制等各个层次的研究成果,提出多尺度的自主研发技术路线。发展适合于高燃料利用率和不同燃料组分的单电池机理模型,并简化出更为合理的半经验模型或近似精确解,用于系统级分析;开发具有自主知识产权的部件模型库,进行系统集成设计和匹配优化;遵循V型开发模式,在系统动态特性分析基础上,开发先进的控制算法形成快速控制原型;建立实时控制的硬件在环演示系统,进行SOFC-GT系统的预集成。 Solid oxide fuel cell gas turbine (SOFC-GT) hybrid generation system is one of highly-efficient clean generation technologies in the future. Research of modeling, optimization and control of the hybrid system is very meaningful to the system integration and commercialization. By introducing the state-of-the-art achievements including mechanistic and semi-empirical model of single cell, stack model, hybrid system model, system integration and optimization, control-oriental dynamic model and control of distributed generation system, the multi-scale independent research and development strategy are presented. Based on the general mechanistic cell model which is suitable for high fuel utilization and multi-component fuel, more accurate semi-empirical or approximate analytical model can be developed for system-level analysis. Based on building the multi-scale model library with independent intellectual property rights, the platform of design and optimization for steady-state system analysis is provided. In the V-type mode, the advanced control algorithms are developed to form the rapid control prototype based on the analysis of system dynamic characteristics. Meanwhile, the hardware-in-the-loop simulation technology with real-time controller can be used for the pre-integration of SOFC-GT system.
作者 包成 蔡宁生
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第2期1-7,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50706019)
关键词 固体氧化物燃料电池 混合发电系统 多尺度模型库 集成与优化 多变量控制 V型模式 Solid oxide fuel cell Hybrid generation system Multi-scale model library Integration and optimization Multi-variable control V-type mode
  • 相关文献

参考文献67

  • 1MASSARDO A F, LUBELLI F. Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFCGT): Part A-Cell model and cycle thermodynamic analysis[J]. J. of Eng. for Gas Turbines Power, 2000, 122: 27-35.
  • 2RIENSCHE E, STIMMING U, UNVERZAGT G. Optimization of a 200 kW SOFC cogeneration power plant. Part I- Variation of process parameters[J]. J. Power Sources, 1998, 71:251-256.
  • 3FELLOWS R, SLOETJES E W, OTTERVANGER R. Stack networking for system optimization: an engineering approach[J]. J. Power Sources, 1998, 71: 138-143.
  • 4DEBENDETTI P G, VAYENAS C G. Steady-state analysis of high temperature fuel cells[J]. Chem. Eng. Sci., 1983, 38(11): 1 817-1 829.
  • 5AHMED S, MCPHEERTERS C, KUMAR R. Thermalhydraulic model of a monolithic solid oxide fuel cell[J]. J. Electrochem. Soc., 1991, 138:2 712-2 718.
  • 6HIRANO A, SUZUKI M, IPPOMMATSU M. Evaluation of a new solid oxide fuel cell system by non-isothermal modeling[J]. J. Electrochem. Soc., 1992, 139:2 744-2 751.
  • 7KAROLIUSSEN H, NISANCIOGLU K, SOLHEIM A. Mathematical modeling of cross plane SOFC with internal reforming[C].The Electrochemical Society. 3rd International Symposium on Solid Oxide Fuel Cells, Pennington, New Jersey: The Electrochemical Society, 1993: 868-877.
  • 8ACHENBACH E. Three-dimensional and time dependent simulation of a planar solid oxide fuel cell stack[J]. J. Power Sources, 1994, 49: 333-348.
  • 9Bessette N F II, WEPFER W J, WINNICK J. A mathematical model of a solid oxide fuel cell[J]. J. Electrochem. Soc., 1995, 142:3 792-3 800.
  • 10FERGUSON J R, FIARD J M, HERBIN R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells[J]. J. Power Sources, 1996, 58: 109-122.

二级参考文献10

  • 1翦天聪.汽轮机原理[M].北京:水利电力出版社,1985..
  • 2Chaney L J, Tharp M R, Wolf T W, et al. Fuel Cell/micro-GT Combined Cycle[R]. Contract No. DE-AC26-98FT40454, USA: DOE Contract by McDermott Technology, Inc. and NREC, 1999.
  • 3Achenbach E, Riensche E. Methane/steam reforming kinetics for solid oxide fuel cells [J]. Journal of Power Sources, 1994, 52: 283-288.
  • 4Peters R, Dahl R, Kluttgen U, et al. Internal reforming of methane in solid oxide fuel cell systems [J]. Journal of Power Sources, 2002, 106: 238-244.
  • 5Tian Yun. Modeling of Solid Oxide Fuel Cell-Gas turbine Hybrid Power Plant[D]. Singapore: Nanyang Technological University, 2002.
  • 6Larminie J, Dicks A. Fuel Cell Systems Explained [M]. England: John Wiley and Sons, 2000.
  • 7NAGATA Susumu, MOMMA Akihiko, KATO Tohru, et al. Numerical analysis of output characteristics of tubular SOFC with internal reformer [J]. Journal of Power Sources, 2001, 101: 60-71.
  • 8ONDA Kazuo, IWANARI Toru, MIYAUCHI Nobuhiro, et al. Cycle analysis of combined power generation by planar SOFC and gas turbine considering cell temperature and current density distributions [J]. Journal of the Electrochemical Society, 2003, 150: A1569-A1576.
  • 9潘蕾,杨瑜文,林中达.燃气轮机双燃料伺服系统动态数学模型的研究[J].动力工程,2001,21(3):1197-1202. 被引量:6
  • 10潘蕾,杨瑜文,林中达.重型单轴燃气轮机-发电机组的综合动力学建模方法的研究[J].动力工程,2002,22(5):1959-1964. 被引量:19

共引文献8

同被引文献113

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部