期刊文献+

基于经验模分解和最小二乘支持矢量机的装载机载质量动态测量混合建模方法 被引量:3

Integrative Modeling Method Based on Empirical Mode Decomposition and Least Square Support Vector Machines about Dynamic Weighing of Loaders
下载PDF
导出
摘要 针对同时实现装载机载质量动态测量的高精度和快速性这一复杂问题,在基于动力学分析所给出的测量方法的基础上,给出一种实现高精度快速性装载机载质量动态测量的混合建模方法,该方法采用经验模分解(Empirical mode decomposition,EMD)作为实测信号的前端处理应用,用于从动态暂态测量信号中提取有效信号;采用最小二乘支持矢量机(Least square support vector machines,LS-SVM)对动态和不确定性因素进行自学习,实现载质量动态测量的速度补偿;同时为使最小二乘支持矢量机发挥最优性能,采用贝叶斯证据框架对其参数进行推断优化;最后,通过比例线性计算方法获知待测载质量值。仿真分析和试验结果表明,按照所建立的混合建模方法进行载质量动态测量其测量精度可稳定在1%以内,验证了该方法的有效性。 For dynamic weighing about loaders, to obtain a quick and exact measure result synchronously is a complex problem. Based on an existent dynamic weighing method about loaders, an original integrative modeling method for dynamic weighing is given. In the method, empirical mode decomposition is used to be the signal processing method for local pressure signal contaminated; and the least square support vector machines is used to be learning machine for dynamic pressure compensation varying with different lift crane velocity; also the Bayesian evidence framework for selecting and tuning parameters of least square support vector machines; Finally, after doing some simple linear proportional calculation, the weight of load is obtained. In the end, emulation analysis and test results all indicate that by using the above modeling method, measure precision within 1% can be obtained.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第2期87-93,共7页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划资助项目(863计划,2003AA430110)
关键词 装载机 动态测量 混合建模方法 经验模分解 最小二乘支持矢量机 贝叶斯证据框架 Loaders Dynamic weighing Integrative modeling method Empirical mode decomposition Least square support vector machines Bayesian evidence framework
  • 相关文献

参考文献8

  • 1王伟,王田苗,魏洪兴,陈殿生.装载机载重动态测量动力学分析与实现方法[J].中国机械工程,2006,17(22):2333-2338. 被引量:7
  • 2HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Pro. R. Soc. 1998, 454: 903-906.
  • 3SUYKENS J A K, VANDEWALLE J. The least square support vector machines classifiers[J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 4KOWK J T. The evidence framework applied to support vector machines [J]. IEEE Transactions on Neural Network, 2000,11(5): 1 162-1 173.
  • 5MACKAY D J C. Probable networks and plausible predictions-A review of practical Bayesian methods for supervised neural networks [J]. Network computation in Neural Systems, 1995,6(3): 469-505.
  • 6VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 7陈永义,俞小鼎,高学浩,冯汉中.处理非线性分类和回归问题的一种新方法(I)——支持向量机方法简介[J].应用气象学报,2004,15(3):345-354. 被引量:181
  • 8GESTEL T V, SUYKENS J A K, BAESTAENS D E, et al. Financial time series prediction using least squares support vector machines within the evidence framework [J]. IEEE Transactions on Neural Network, 2001,12(4): 809-820.

二级参考文献15

  • 1耿迎元.装载机工作装置连杆机构举升过程的运动分析[J].工程机械,1994,25(5):7-11. 被引量:9
  • 2刘传榕 李学忠.装载机载重测量系统数学模型[J].工程机械,1997,28(1):11-12.
  • 3Vapnik V N.Statistical Learning Theory.John Wiley & Sons,Inc.,New York,1998.
  • 4Vapnik V N.The Nature of Statistical Learning Theory.Springer Verlag,New York,2000.(有中译本:张学工译.统计学习理论的本质.北京:清华大学出版社,2000.)
  • 5Cristianini N and Shawa-Taylor J.An Introduction of Support Vector Machines and Other Kernel_based Learning Methods.Cambridge University Press,2000.
  • 6Burges C J.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2: 127~167.
  • 7Courant R and Hilbert D,Method of Mathematical Physics,Volume I.Springer Verlag,1953.
  • 8http://www.kernel-machines.org/
  • 9Scholkopf B,Burges Ch-J C and Smola A J,edited.Advances in Kernel Methods-Support Vector Learning.MIT Press,Cambridge,1999.
  • 10杨成康 张铁柱.装载机工作装置性能参数的电算分析[J].吉林大学学报:工学版,1987,(1):94-95.

共引文献186

同被引文献18

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部