期刊文献+

Lattice Boltzmann方法模拟常速对流弥散方程 被引量:1

Numerical Modelling of Constant Velocity CDE (Convective-Diffusion Equation) with Lattice Boltzmann Method
下载PDF
导出
摘要 在解决地下水溶质运移问题时有多种数值模拟方法,运用BGK逼近的Lattice Boltzmann模型,在结合纯弥散方程基础上推导出常速对流弥散方程(CDE)及数值解法,通过Matlab编程计算了一个用于模型检验的一维模型。计算结果显示,运用此方法得出的数值与解析值吻合良好,证明了该数学模型是正确的。 There are several numerical modelling methods for transportations of ground water solute. This paper presents a Lattice Boltzmann Model (LBM) with Bhatnagar, Gross and Krook (BGK) approach to gain the constant velocity convective-diffusion equation (CDE) based on the diffusion equation derived by former researchers, and the numerical solution has also been given. An one-demensional CDE with a constant velocity was simulated with this method by using Matlab code, and the numerical results perfectly fit the analytical results, which can prove the correctness of this model.
出处 《水电能源科学》 2008年第1期78-80,103,共4页 Water Resources and Power
基金 国家自然科学基金资助项目(50579012)
关键词 LATTICE Boltzmann模型 常速CDE 数值模拟 Lattice Boltzmann model constant velocity CDE numerical modelling
  • 相关文献

参考文献10

  • 1黄勇,周志芳,王锦国.改进的随机步行法在溶质运移模拟中的应用[J].岩石力学与工程学报,2004,23(14):2326-2330. 被引量:7
  • 2Sekhar M. Modqelling Transport of Linearly Sorbing Solutes in a Single Fracture: Asymptotic Behaviorof Solute Velocity and Dispersivity[J]. Geotechnical and Geological Engineering, 2005, 24: 183- 201.
  • 3Kerry T B, Macquarriea, Ulrich Mayerk. Reactive Transport Modeling in Fractured Rock:A State-of-the-science Review [J].Earth-Science Reviews, 2005,72: 189-227.
  • 4Lin B S, Lee C H. Percolation and Dispersion of Mass Transport in Saturated Fracture Networks [J]. Water Resources Management, 1998 ( 12 ) : 409- 432.
  • 5Vogel T, Gerkeb H H, Zhang R, et al. Modeling Flow and Transport in a Two-dimensional Dual- permeability System with Spatially Variable Hydraulic Properties [J]. Journal of Hydrology, 2002,238:78-89.
  • 6McNamara GR,Zanetti G. Use of the Boltzmann- equation to Simulate Lattice-gas Automata [J]. Phys Rev Lett,1988,61(20):2 332-2 335.
  • 7Wolf-Gladrow D A. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction [M]. Springer-Verlag, Berlin, 2000.
  • 8Succi S. The Lattice Boltzmann Method for Fluid Dynamics and Beyond [D]. Oxford Univ. Press, Oxford ,England ,U. K. , 2001.
  • 9Mei R W. Lattice Boltzmann Method for 3-D Flows with Curved Boundary [J]. Journal of Computational Physics, 2000,161 : 680-699.
  • 10Nishant gupa. Lattice Boltzmann Method Applied to Variable Thermal Conductivity Conduction and Radiation Problems[J]. Journal of Thermophysics and Heat Transfer, 2006,20(4) : 10-12.

二级参考文献10

  • 1James S C, Chrysikopoulos C V. An efficient particle tracking equation with specified spatial step for the solution of the diffusion equation[J]. Chem. Eng. Sci., 2001, (56): 6 535-6 543
  • 2Schwartz F W, Smith L. A continuum approach for modeling mass transport in fractured media[J]. Water Resour. Res., 1988, 24(8):1 360-1 372
  • 3MargolinG, BerkowitzB, ScherH. Structure, flow and generalized conductivity scaling in fracture networks[J]. Water Resour. Res.,1998, 34(9): 2 103-2 121
  • 4Zhang R, Huang K, van Genuc M T. An efficient Eulerian-Lagrangian method for solving solute transport problems in steady and transient flowfields[J]. Water Resour. Res., 1993, 29(12): 4 131-4 138
  • 5Thompson A F B, Gelhar L W. Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media[J]. Water Resour. Res., 1990, 26(10): 2 541-2 562
  • 6Uffink G J M. Modeling of solute transport with the random walk method[J]. InE. Custodio, A Gurgui, J. P. Lobo Ferreira, 1988, 20(3):247-265
  • 7Tory E M. Stochastic sedimentation and hydrodynamic diffusion[J].Chemical Engineering Journal, 2000, (80): 81-89
  • 8Pack Y J, de Dreuzy J R. Transport and intersection mixing in random fracture networks with power law length distributions[J]. Water Resour. Res., 2001, 37(10): 2 493-2 501
  • 9Pack Y J, Lee K K. Analytical solutions for solute transfer characteristics at continuous fracture junctions[J]. Water Resour. Res.,1999, 35(5): 1 531-1 537
  • 10成建梅,胡进武.饱和水流溶质运移问题数值解法综述[J].水文地质工程地质,2003,30(2):99-106. 被引量:16

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部