期刊文献+

带记忆信息的协同进化算法

A Coevolutionary Algorithm with Memory
下载PDF
导出
摘要 本文提出了一种带记忆信息的协同进化算法——将种群划分为一个子种群和多个独立的个体,协调算法的局部与全局搜索能力;独立个体中适应度最高的个体与子种群进行交叉与合并,实现种群内部的协作与更新;利用子种群内个体间的相似性,选择有代表性个体进行多次变异,发现有利于提高个体适应度的重要基因位来引导该子种群的变异行为。实验表明,本文算法能够快速找到高精度的数值解,性能稳定且易于实现。 A coevolutionary algorithm with memory (MCEA) is presented to simulate the local self-adaptive evolutionary process of biological colony. Colony is composed of a subgroup and individuals to harmonize preferably global and local search. Crossover and combination are executed between the elite of individuals and the subgroup to coevolve. Comparability among the individuals in the evolution anaphase is utilized. The delegate is executed repeatedly for mutation in order to find the important locas to induct the mutation of subgroups. Experiments show that MCEA is fast, stable and easy-to-realize.
作者 吴斯 曹炬
出处 《计算机工程与科学》 CSCD 2008年第3期78-81,共4页 Computer Engineering & Science
关键词 协同进化 自组织学习 记忆型变异 进化算法 coevolution self-organize study mutation with memory evolutionary algorithm
  • 相关文献

参考文献7

  • 1Holland J H. Adaptation in Natural Artificial Systems [M]. Massachuetts: MIT Press, 1975,1-9.
  • 2Yao X, Liu Y, Lin G. Evolutionary Programming Made Faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3 (2) : 82-102.
  • 3Leung Y W, Wang Y. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization[J]. IEEE Trans on Evolutionary Computation, 2001, 5 (1) : 41- 53.
  • 4洪毅,任庆生,曾进.位重要性进化算法[J].计算机学报,2006,29(6):992-997. 被引量:5
  • 5Rowlins G. Foundations of Genetic Algorithm[J]. Los Altos : Morgan Kaufmann, 1991.
  • 6Gog A,Dumitreseu D. Adaptive Search in Evolutionary Combinatorial Optimization[C]// Proc of the Int'l Conf Bio-Inspired Computing-Theory and Applieations, 2006 : 123-130.
  • 7蒋冬初,林亚平.遗传算法在求解函数优化中的最优化参数研究[J].计算机工程与科学,2005,27(10):50-52. 被引量:3

二级参考文献7

  • 1V S Gordon, D Whitley. Serial and Parallel Genetic Algorithms as Function Optimizers[A]. Proc of the 5th Int'1 Conf on Genetic Algorithms[C]. 1993. 177-182.
  • 2David H Wolpert, William G Macready. No Free Lunch Theorems for Optimization[J]. IEEE Trans on Evolutionary Computation, 1997,1(1): 67-82.
  • 3A Tuson,P Ross. Adapting Operator Settings in Genetic Algorithms[J]. Evolutionary Computation, 1998,6(2): 161 - 184.
  • 4Lozano J.A.,Larranaga P..Optimization by learning and simulation of probabilistic graphical models.In:Proceedings of the PPSN2002,2002
  • 5Muhlenbein H..The equation for response to selection and its use for prediction.Evolutionary Computation,1997,5(3):303~346
  • 6Larranaga P.,Lozano J.A..Estimation of Distribution Algorithms:A New Tool for Evolutionary Computation.New York:Kluwer Academic Publishers,2001
  • 7陈长征,王楠.遗传算法中交叉和变异概率选择的自适应方法及作用机理[J].控制理论与应用,2002,19(1):41-43. 被引量:81

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部