期刊文献+

基于案例推理的竖炉故障预报系统 被引量:10

Fault prediction system using case-based reasoning for shaft furnace status
下载PDF
导出
摘要 为降低竖望炉焙烧过程的故障发生率,基于故障机理的分析,将过程参量预报与案例推理技术相集成,提出了竖炉焙烧过程的智能故障预报方法.参量预报模型对不易在线连续测量但能反映故障征兆的关键工艺参数进行实时预报,在此基础上,采用案例推理技术对焙烧过程进行全面分析并给出一些典型故障发生的概率和操作指导.将所建立的故障预报系统成功应用于竖炉焙烧过程的生产实际中,故障发生率明显降低,取得了显著应用成效. For reducing the fault ratio of shaft ore-roasting furnace, based on the analysis of the fault mechanism and combination of case-based reasoning (CBR) and variables prediction, an intelligent fault prediction approach is proposed for the shaft furnace roasting process. The prediction model of the process variables performs to predict key technical parameters as the fault symptoms that is hard to measure online. The probability of the typical fault and their operation guidance with the help of case-based reasoning technology are obtained. The proposed fault prediction system is successfully applied to the roasting process of a shaft furnace, the fault ratios during production process is decreased, and the proved benefit is achieved.
出处 《控制与决策》 EI CSCD 北大核心 2008年第2期177-181,共5页 Control and Decision
基金 国家重点基础研究发展规划项目(2002CB312201) 北京工业大学博士科研流动基金项目(5200201720070)
关键词 故障预报 案例推理 参量预报 竖炉 智能 Fault prediction Case-based reasoning Variable prediction Shaft furnace Intelligent
  • 相关文献

参考文献14

  • 1张晓冬,柴振新.酒钢100m^3竖炉的发展与生产实践[J].金属矿山,2000,29(3):32-33. 被引量:12
  • 2Chang S Y, Chang C T. A fuzzy-logic based fault diagnosis strategy for process control loops [ J]. Chemical Engineering Science, 2003, 58 (15): 3395- 3411.
  • 3Awadallah M A, Morcos M M. Application of AI tools in fault diagnosis of electrical machines and drives - An overview[J]. IEEE Trans on Energy Conversion, 2003, 18(2): 245-251.
  • 4Wu M, She J H, Nakano M, et al. Expert control and fault diagnosis of the leaching process in zinc hydrometallurgy plant [ J ]. Control Engineering Practice, 2002, 10(4):433-442.
  • 5Yu D L, Gomm J B, Williams D. Sensor fault diagnosis in a chemical process via RBF neural networks[J]. Control Engineering Practice, 1999, 7(1) : 49-55.
  • 6Chen K Y, Lim C P, Lai W K. Application of a neural fuzzy system with rule extraction to fault detection and diagnosis[J]. J of Intelligent Manufacturing, 2005, 16 (6):679-691.
  • 7Lee S G, Ng Y C. Hybrid ease-based reasoning for online product fault diagnosis[J]. Int J of Advanced Manufacturing Technology, 2006, 27(7/8): 833-840.
  • 8Yan A J, Wu F H, Chai T Y. Fault diagnosis expert system using neural networks for roasting process[C]. The 16th IFAC World Congress/CD. Prague, 2005.
  • 9严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 10Lin D T. Facial expression classification using PCA and hierarchical radial basis function network[J]. J of Information Science and Engineering, 2006, 22 (5) : 1033-1046.

二级参考文献43

共引文献58

同被引文献180

引证文献10

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部