期刊文献+

一种基于Duffing时间序列的信噪比的估计方法

A Method of Evaluating the Signal to Noise Ratio (SNR) Based on Duffing Time Sequence
下载PDF
导出
摘要 为了在含有噪声的短时间Duffing时间序列中较快地估计出其信噪比,采用建立基于Duffing时间序列的重构相空间,计算与含噪时间序列有关的轨迹平均分离距离这个统计量,研究含噪信号的信噪比(SNR)与轨迹平均分离距离(ADD)的关系,找出一种有效的估计方法。通过数据拟合发现ADD随SNR指数衰减,经仿真验证,估计出的信噪比相对误差不超过1%,这对于微弱信号的检测具有积极的意义。 In order to evaluate the Signal to Noise Ratio (SNR) quickly in the Duffing time sequence which contains noise, reconstructed phase space,which is based on Duffing time sequence,is adopted to overcome the difficulty. Calculate the statistics which is got from Average Divergencing Distance (ADD),then studing the relationship between SNR and ADD,finding a kind of effective evaluated method. Through the data imitation,the result is that ADD attenuates with SNR in the style of exponent. Through the simulation verification,proportional error of the evaluated SNR is no more than 1%, It is very important to detect weak signal in the field of signal disposal.
作者 吕科 付永庆
出处 《现代电子技术》 2008年第5期22-24,共3页 Modern Electronics Technique
关键词 Duffing时间序列 信噪比 轨迹平均分离距离 估计方法 Dulling time sequence signal to noise ratio average divergence distance estimate method
  • 相关文献

参考文献9

  • 1Ewa Swierez. A New Method of Detection of Coded Signals in Additive Chaos on the Example of Barker Code[J]. Signal Processing, 2006,86 (1): 153 - 170.
  • 2Vesna Rubezic. Time - Frequency Representations - based Detector of Chaos in Oscillatory Circuits[J]. Signal Processing,2006,86:2 255 - 2 270.
  • 3Dixiong Yang. Convergence Analysis of First Order Reliability Method Using Chaos Theory[J]. Computers and Structures,2006,84:563 - 571.
  • 4Zuo X Q. A Chaos Search immune Algorithm with Its Application to Neuro- fuzzy Controller Design[J]. Chaos, Selitons and Fractals, 2006,30 : 94 - 109.
  • 5Chunbiao Gan. Noise - induced Chaos in a Quadratically Nonlinear Oscillator[J]. Chaos, Solitons and Fractals,2006, 30:920- 929.
  • 6Vikas Rai. Evolving to the Edge of Chaos: Chance or Necessity[J]. Chaos,Solitons and Fractals,2006,30:1074 - 1 087.
  • 7Samuel Bowong. Synchronizing Chaotic Dynamics with Uncertainties Using a Predictable Synchronization Delay Design [J]. Communications in Nonlinear Science and Numerical Simulation, 2006,11 : 973 - 987.
  • 8王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2000.
  • 9杨志家,赵光宙.一种定量估计混沌信号中信噪比的方法[J].信号处理,1999,15(3):226-229. 被引量:2

二级参考文献1

  • 1Gao J B,Phys Lett A,1993年,181卷,153页

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部