期刊文献+

基于核支持向量最优变换矩阵的雷达目标一维距离像识别

Radar Target Recognition Using Range Profiles Based on KSVs Optimal Transform Matrix
下载PDF
导出
摘要 提出了一种基于支持向量最优变换矩阵的雷达目标一维距离像识别方法。该方法利用支持向量构建类间散布矩阵和类内散布矩阵,结合零空间特性得到最优变换矩阵,该变换矩阵被用来从原始一维距离像中提取判别特征。对输入目标,利用欧式距离进行分类,以确定目标所属类别。对三类飞机的实测一维距离像数据进行了仿真实验,实验结果表明了该方法的有效性。 The paper proposes a novel approach for radar target recognition based on Kernel Support Vectors(KSVs) optimal transform matrix,which constructs a betweenclass matrix and a within- class scatter matrix by use of KSVs. In addition,the null -space fisher method is exploited to calculate the optimal transform matrix, which is used to extract the discrimi- nant features form the original range profiles. For the test sample,final decision is made in accord with the Euclidean distance. Experimental results on range profiles of three kinds of planes demonstrate the effectiveness of this proposed method.
作者 张琴 周代英
出处 《现代电子技术》 2008年第5期31-33,共3页 Modern Electronics Technique
关键词 雷达目标识别 一维距离像 核支持向量 最优变换矩阵 radar target recognition range profile kernel support vectors optimal transform matrix
  • 相关文献

参考文献4

  • 1Vapnik N. The Nature of Statistical Learning Theory[J]. New York: Springer Verlag, 1995 : 1 - 188.
  • 2Liu Wei,Wang Yun- hong. Null Space- based Kernel Fisher Diseriminant Analysis for Face Reeognition[C]. (In): Proceedings of the 6th International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 2004:369 -374.
  • 3张宝昌,陈熙霖,山世光,高文.基于支持向量的Kernel判别分析[J].计算机学报,2006,29(12):2143-2150. 被引量:10
  • 4Liu Q S, Huang R, Lu H Q, et al. Face Recognition Using Kernel Based Fisher Discriminant Analysis[C]. (In):Proceedings of the 5th International Conference on Automatic Face and Gesture Recognition. Washington, DC, USA, 2002, 12:197- 201.

二级参考文献17

  • 1Burges C. J. C.. A tutorial on support vector machines for pattern recognition, Knowledge Discovery and Data Mining,1998, 2(2): 121-167
  • 2边肇祺,张学工等.模式识别.北京:清华大学出版社,2000
  • 3Mika S, Ratsch G, Weston J, Scholkopf B, Muller K.R.. Fisher discriminant analysis with kernels. In: Proceedings of the IEEE International Workshop on Neural Networks for Signal Processing, Madison, USA, 1999, 41-48
  • 4Baudat G, Anouar F.. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12 (10) : 2385-2404
  • 5Lcc C, Landgrebe D. A.. Feature selection based on decision boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(1) : 388-400
  • 6Fransens R, Pris Jan De.. SVM based nonparametric discriminant analysis, an application to face detection. In: Proceedings of the 9th International Conference on Computer Vision, Nice, France, 2003, 1289-1296
  • 7Daugman J. G.. Face and gesture recognition: Overview.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 675-676
  • 8Belhumeur Peter N, Hespanha John P, Kriegman David J..Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
  • 9Wiskott L, Fellous J. M, Kruger N, yon der Malshurg C..Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 775-779
  • 10Liu Qing Shan, Huang Rui. Face recognition using kernel based fisher discriminant analysis. In: Proceedings of the 5th International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 2C02, 187-191

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部