摘要
本文定义了神经元网络的权值拟熵,在对多层前馈网训练的常规目标函数中加入权值拟熵作为约束项以改变网络的权值分布从而修定网络结构.将此方法用于一类非线性系统的神经网络辨识中可以优化网络模型输入项数和隐节点数目.
In this paper we define the pseudo-entropy of network weights. By adding it into the normalobjective function we can obtain a rational network structure during training. Put this method into the neuralnetwork based nonlinear system identification we can acquire a proper number of input and hidden neurons.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1997年第4期489-494,共6页
Control Theory & Applications
基金
国家自然科学基金
关键词
神经元网络
网络结构
非线性系统
系统辨识
multilayer neural networks
pseudo-entropy of weights
pseudoprobability of weights
nonlinear system identification
objective function