期刊文献+

大豆分离蛋白与低浓度尿素相互作用的红外光谱分析 被引量:7

Determination of Interaction of Urea and Soybean Protein Isolate by Fourier Transform Infrared Spectroscopy
下载PDF
导出
摘要 大豆蛋白在食品工业中有很重要的应用,随着地球可再生资源的日益匮乏,大豆蛋白在非食品工业中的应用也越来越受到人们的关注,尿素是常用的化学变性剂,在蛋白质变性中有广泛的应用。为研究尿素变性对大豆蛋白结构的影响,对大豆分离蛋白(SPI)与低浓度尿素溶液相互作用的红外光谱进行了酰胺Ⅲ带研究。结果表明,溶解在不同浓度尿素溶液中的大豆分离蛋白的二级结构与大豆分离蛋白的水溶液相比发生了很大的变化,在0.1molL-1尿素溶液中大豆分离蛋白中的β-折叠的含量最小,随着尿素浓度的增加,β-折叠的含量增加,无规卷曲的含量在0.1molL-1尿素溶液中达到最大,之后随尿素浓度增加而降低,α-螺旋和β-转角随着尿素浓度的增加,其含量都是呈现先增加后下降的趋势,在1molL-1尿素溶液中两者的含量与大豆分离蛋白水溶液中的含量相比变化不大。因此,低浓度尿素可以明显影响大豆分离蛋白的二级结构。 Soy protein is attractive because they are environmentally friendly, biodegradable and renewable. Thus, more and more attention has been given to the development of soy protein's application in non-food industry. Urea is a common chemical denaturant, which is used widely to denature protein. To study the effect of urea modification on soy protein, FTIR spectroscopy was applied to investigate the interaction of urea and soybean protein isolates(SPI). Amide band Ⅲ of SPI was analyzed to obtain the change in secondary structure of SPI when different concentrations of urea were added. At 0. 1 mol L^-1 concentration of urea ,the content of β-sheet decreased and the content of random coil increased. With the increasing of urea concentration, the β- sheet increased and the random coil decreased. The contents of α- helix and β- turn increased at first and then decreased with the increment of urea concentration. These results indicated that lower concentration of urea has obvious effects on the secondary structure of soy protein isolates.
出处 《大豆科学》 CAS CSCD 北大核心 2008年第1期134-136,144,共4页 Soybean Science
关键词 大豆分离蛋白 尿素 红外光谱 Soy protein isolate Urea Fourier transform infrared spectroscopy
  • 相关文献

参考文献5

二级参考文献42

  • 1孙素琴,高鸿锦,关元红,吴斌,邹承鲁.FTIR法研究核糖核酸酶(RNase A)二级结构随温度的变化[J].光谱学与光谱分析,1994,14(6):53-55. 被引量:11
  • 2张艳,陈培榕,何飚,周海梦.利用CD和FTIR研究氨基酰化酶的Holo-酶和Apo-酶的二级结构[J].中国科学(B辑),1994,24(6):602-607. 被引量:2
  • 3邹承鲁.蛋白质的变性是一个分子逐步伸展的过程[J].生物化学杂志,1993,:4-5.
  • 4Lin N L, Brandts J F. Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization [J]. Biochemistry, 1978,17 : 4102-4112.
  • 5Makhatadze G I, Privalov P L. Protein interaction with urea and guanidinium ehloride: A calorimetrie study[J]. J Mol Biol, 1992,226 : 491 - 505.
  • 6Roseman M, Jecks W P. Interaction of urea and other polar compounds in water [J]. J Am Chem Soc,1975,97 : 631-640.
  • 7Dill K A, Shortle D. Denatured states of proteins [J]. Annu Rev Biochem,1991,60:795-825.
  • 8Pace C N, Marshall H F. A comparison of the effectiveness of protein denaturation for β-lactoglobulin and ribonuclease [J]. Arch Biochem Biophys, 1980,199 : 270-276.
  • 9Tanford C. Protein denaturation : Part A. Characterization of the denatured state ; Part B. The transition from native to denatured state [J]. Adv Protein Chem,1968,23:121-282.
  • 10Goldenberg D P. Protein Structure,a practical approach [M]. Oxford: Oxford University Press, 1990. 311330.

共引文献174

同被引文献84

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部