摘要
本文提出一种基于奇异值分解(SVD)的固定区间平滑新方法,该方法基于RanchTung-Striebel固定区间平滑方法,利用奇异值分解作为计算工具,将原算法中协方差阵进行奇异值分解,不仅具有很好的数值稳定性和鲁棒性,而且避免了矩阵的求逆,此外,采用SVD分解,具有明显的物理意义.仿真计算结果证明了本文方法的有效性和优越性.
In this paper, a new fixed-interval smoothing algorithm based on singular value decomposition(SVD) technique is proposed. Based on Daunch-Tung-Strebel smoothing algorithm, the new smoothermakes use of the singular value decomposition as a main computation tool. The presented algorithm not onlyhas anexcellent numerical stability but also does not necessitate the inversion of system transition matrix.The algorithm is formulated in the form of vector-matrix operations, so it is useful for parallel computers. Atypical numerical example is used to demonstrate the performance of the new smoother.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1997年第4期579-583,共5页
Control Theory & Applications
基金
国家自然科学基金
国防预研基金
关键词
奇异值分解
卡尔曼滤波
平滑
singular value decomposition
Kalman filter, smoothing algorithm