期刊文献+

不同放大级Fe/Cu/K/SiO2催化剂的表征及其浆态床费托合成反应性能 被引量:2

Characterization and Slurry Fischer-Tropsch Synthesis Performance of Fe/Cu/K/SiO_2 Catalysts with Different Scaled-Up Levels
下载PDF
导出
摘要 采用连续共沉淀和喷雾干燥成型相结合的方法,制备了实验室级和放大级微球状费托(FT)合成Fe/Cu/K/SiO2催化剂.实验室级催化剂的颗粒尺寸为5~15μm,放大级催化剂的颗粒尺寸为40~60μm.利用低温N2物理吸附、H2程序升温还原、CO2程序升温脱附、穆斯堡尔谱和X射线衍射等表征手段考察了催化剂的织构性质、还原行为、碳化行为及物相变化.结果表明,与实验室级催化剂相比,放大级催化剂具有较大的晶粒尺寸和孔径、较小的比表面积和较弱的表面碱性,催化剂的还原和碳化受到抑制.浆态床FT合成反应及扫描电子显微镜结果表明,放大级催化剂经诱导期达到稳定状态后,转化率可达到实验室级催化剂的水平,且具有很高的稳定性、重质烃选择性及抗磨损性. Two spherical Fe/Cu/K/SiO2 catalysts with different preparation scale for slurry Fischer-Tropsch (FT) synthesis were prepared by a combination of co-precipitated and spray drying method. The pellet size of the catalyst with a laboratory scale is 5-15 μm, whereas that is 40-60 μm for the scaled-up catalyst. N2 physical adsorption, H2 temperature-programmed reduction, CO2 temperature-programmed desorption, M6ssbauer spectroscopy, and X-ray diffraction were used to characterize the textural properties, reduction and carburization behavior, and phase transformation of the two catalysts. The results show that the scaled-up catalyst has larger crystallize size and pore volume, lower BET surface area, and lower surface basicity than the laboratory-scale catalyst. Moreover, the scaled-up catalyst was more difficult to be reduced and carburized. However, the results of FT synthesis in a slurry bed indicate that the scaled-up catalyst exhibits comparative activity, better reaction stability, and higher selectivity for olefin and heavy hydrocarbons. Scanning electron microscopy results suggest a better attrition resistance of the scaled-up catalyst during the FT reaction tests.
出处 《催化学报》 SCIE CAS CSCD 北大核心 2008年第2期167-173,共7页
基金 国家自然科学基金重大项目(20590361) 国家重点基础研究发展计划(973计划)前期研究专项(项目2007CB216401)
关键词 费托合成 浆态床 铁/铜/钾/二氧化硅催化利 Fischer-Tropsch synthesis slurry bed Fe/Cu/K/SiO2 catalyst
  • 相关文献

参考文献23

二级参考文献71

  • 1马斌.浆态床F-T合成的应用前景[J].煤化工,1996,24(1):14-23. 被引量:11
  • 2Bukur D B,Sivaraj C. Appl Catal A,2002,231(1/2):201.
  • 3Davis B H. Catal Today,2003,84(1/2):83.
  • 4Bukur D B,Lang X,Mukesh D,Zimmerman W H,Rosynek M P,Li C. Ind Eng Chem,Res,1990,29(8):1588.
  • 5Bukur D B,Nowicki L,Lang X. Chem Eng Sci,1994,49(24A):4615.
  • 6Dry M E. In:Anderson J R,Boudart M eds. Catalysis Science and Technology,Vol 1. Berlin:Springer,1981. 159.
  • 7Bukur D B,Lang X. Ind Eng Chem,Res,1999,38(9):3270.
  • 8Sudsakorn K,Goodwin J G Jr,Jothimurugesan K. Ind Eng Chem,Res,2001,40(22):4778.
  • 9Zhao R,Goodwin J G Jr,Jorthimurugesan K,Gangwal S K,Spivey J J. Ind Eng Chem,Res,2001,40(4):1065.
  • 10Jin Y,Datye A K. J Catal,2000,196(1):8.

共引文献93

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部