摘要
本文针对BP(backpropagation)前馈神经网络存在的训练时间长、容易陷入局部极小等问题,研究了一个基于机器学习的神经网络初始化方法.实验结果表明,用这种方法初始化神经网络,提高了神经网络的学习效率和泛化能力,并且可以有效地抑制陷入局部极小的可能性.
In order to solve the problem of long training time and local minima in BP neural network, a method of neural network initialization based on machine learning is studied in this paper. The experiment results show that the learning efficiency and generalization ability of the initialized neural network are increased and the probability of falling to local minima is decreased.
出处
《计算机研究与发展》
EI
CSCD
北大核心
1997年第8期599-604,共6页
Journal of Computer Research and Development
基金
国家自然科学基金
关键词
前馈神经网络
网络初始化
机器学习
神经网络
feedforward neural network, back propagation algorithm, network initialization, machine learning