期刊文献+

基于PIDNN控制的飞行模拟器人感系统 被引量:5

Human perceive system of simulative aircraft based on PIDNN
下载PDF
导出
摘要 针对飞行模拟器人感系统的高度非线性和易受干扰性,提出一种基于PIDNN(Proportional Integral Differential Neural Network)的控制方案.首先对飞行模拟器人感系统的模型进行分析研究,对它所受到的外界干扰作理论分析,整理出系统的数学模型,再利用PIDNN控制器优良的在线训练、学习和调整功能对该模型进行仿真控制.与传统PID(Propor-tional Integral Differential)控制器相比,PIDNN结构简单、自适应性强、收敛速度快、不会陷入局部极小.仿真结果表明:PIDNN控制系统响应速度快、稳态精度高、具有良好的动静态特性和鲁棒性,满足实时控制的要求. A control scheme based on proportional integral differential neural network (PIDNN) was proposed to control the highly nonlinear and vulnerable simulative aircraft and sensing system. Firstly, the models of the human perceive system for the simulative aircraft was analyzed and studied, the system formula was ratiocinated consequently, and its disturbance from outside environment was analyzed theoretically. Then its superior function of PIDNN controller for its on-line training, learning and regulating ability were used to control the system in simulation environment. Comprising the all-ready used traditional proportional integral differential (PID) controllers, PIDNN has simpler structure, stronger adaptability and faster tracing ability without singularity. The simulation experiment result shows that the PIDNN has properties of quick response and nice steady accuracy, and has a well static and dynamic and robust character, so it can meet the need of real-time control.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第2期153-157,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60572185) 中国民航飞行学院自然科学研究基金资助项目
关键词 比例积分微分神经元网络(PIDNN) 飞行模拟器 人感系统 实时控制 proportional integral differential neural network (PIDNN) simulative aircraft human per-ceive system real-time control
  • 相关文献

参考文献8

  • 1冯慧.侧杆操纵中人感系统对人机耦合的影响分析[D].北京:北京航空航天大学自动化科学与电气工程学院,2004
  • 2沈东凯,华清,王占林.基于神经网络的电动加载系统[J].航空学报,2002,23(6):525-529. 被引量:20
  • 3刘金琨.智能控制[M].北京:电子工业出版社,2002:245-266
  • 4董新民,王小平.飞行模拟器电动式纵向操纵人感系统的研究[C]//王小平.中国航空学会第八次飞行器控制与操纵学术交流会论文集.湖北襄樊:中国航空学会,1999:92-96
  • 5Hess R A. Analyzing manipulator and feel system effects in aircraft flight control [ J]. IEEE Transactions on Systems, Man, and Cybernetic, 1990,20(4) : 923 -931
  • 6林用满,林土胜.基于PID神经网络的后非线性盲源分离算法[J].数据采集与处理,2006,21(3):260-265. 被引量:1
  • 7Shu Huailin, Pi Youguo. PID neural networks for time-delay systems [ J]. Computer and Chemical Engineering, 2000, 24 (7) : 859 -862
  • 8舒怀林.神经元控制系统[M].北京:国防工业出版社,2006:156-168

二级参考文献16

  • 1林用满,林土胜.加入动量项的改进盲分离算法[J].华南理工大学学报(自然科学版),2006,34(1):6-9. 被引量:8
  • 2王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 3Pajunen P, Hyvarinen A, Karhunen J. Nonlinear blind source separation by self-organizing maps[C]//Proceedings of the 1996 International Conference on Neural Information Processing. Hong Kong:[s. n. ],1996:1207-1210.
  • 4Woo W L,Sali S. Neural network schemes for blind separation of sources from nonlinear mixtures [C]//Proceedings in Systemics, Cybernetics and Informatics Conference. Florida, USA : [s. n.],2002:1227-1234.
  • 5Yang H H,Amari S, Cichocki A. Information back-propagation for blind separation of sources from non-linear mixtures[C]//Proceedings of the International Conference on Neural Networks. Houston, Texas,USA:[s. n. ],1997:2141-2146.
  • 6Woo W L,Dlay S S. Nonlinear blind source separation using a hybrid RBF-FMLP network[J]. IEEE Proceedings on Vision ,Image and Signal Processing,2005,152(2) : 173-183.
  • 7Hyvarinen A, Oja E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4-5): 411-430.
  • 8Tan Ying, Wang Jun, Jacek M Z. Nonlinear blind source separation using a radial basis function network [J ]. IEEE Transactions on Neural Network,2001,12 (1):124-134.
  • 9Solazzi M, Uncini A. Spline neural networks for blind separation of post-nonlinear-linear mixtures[J]. IEEE Transactions on Circuits and Systems-Ⅰ,2004,51 (4) : 817-829.
  • 10Lee T W,Bell A J ,Orglmeister R. Blind source separation of real world signals[C]//Proc of IEEE Int'l Conf on Neural Networks Houston. USA: IEEE,1997:2129-2135.

共引文献19

同被引文献50

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部