期刊文献+

基于遗传模糊聚类的机群编队最优分配方法 被引量:4

Optimized formation assignment for large-scale air fleet using fuzzy clustering and genetic algorithm
下载PDF
导出
摘要 针对当前机群的编队分配存在效率低、编队分配结果不可靠、智能性差等问题,提出了一种新的结合遗传算法和模糊聚类算法的机群编队最优分配方法.该混合算法通过模糊聚类算法解决了机群的编队分配不确定性问题,并且通过对传统遗传操作算子的改进,采用改进的遗传算法有效地克服了模糊聚类算法容易陷入局部极小值和对初始条件敏感的缺点,使机群的编队分配能快速收敛至全局最优解.3组不同分布类型的机群编队分配算例结果表明,该混合算法具有较好的通用性、有效性和智能性,适用于机群的编队最优分配. Aiming at the low efficiency, fallibility of formation assignment result and lack of intelligence in optimized formation assignment for large-scale air fleet, a new hybrid genetic fuzzy clustering algorithm (GFCA) was proposed for large-scale air fleet optimized formation assignment by incorporating the fuzzy clustering algorithm into the genetic algorithm (GA). The GFCA solved the uncertainty problem of formation assignment for air fleet by fuzzy clustering algorithm, avoided the local minima and was robust to initialization by using improved GA, with new genetic arithmetic operators, so as to obtain the global optima for formation assignment quickly. The results of two examples show that the GFCA has better generalization, effectiveness and intelligence, and it is applicable to optimized formation assignment for large-scale air fleet.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第2期193-196,214,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家863资助项目(2006AA04Z260) 国家自然科学资助项目基金(60674103) 航空科学基金资助项目(2006ZC51026)
关键词 编队分配 模糊聚类 遗传算法 优化 formation asslgnment fuzzy clustering genetic algorithms optimization
  • 相关文献

参考文献9

  • 1张科施,王正平.基于遗传模拟退火算法的空战编队优化研究[J].西北工业大学学报,2003,21(4):477-480. 被引量:12
  • 2Patrick C H Ma, Keith C C Chan, Xin Yao, et al. An evolutionary clustering algorithm for gene expression microarray data analysis[ J ]. IEEE Transactions on Evolutionary Computation, 2006, 10(3) : 296 -314
  • 3Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981:43-93
  • 4Nikhil R Pal, Kuhu Pal, James M Keller, et al. A possibilistic fuzzy c-means clustering algorithm [ J ]. IEEE Transactions on Fuzzy Systems, 2005, 13(4) : 517 -530
  • 5Holland J H. Genetic algorithms [ J]. Scientific American, 1992, (9) :44 -50
  • 6Vasconcelos J A, Ramirez J A, Takahashi R H C, et al. Improvements in genetic algorithms [ J ]. IEEE Transactions on Magnetics, 2001, 37 ( 5 ) : 3414 - 3417
  • 7Choe H, Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm [ C ]//Proceedings of The 1 st IEEE International Conference on Fuzzy Systems. San Diego, CA, USA: IEEE, 1992:349-354
  • 8Shen Yi, Shi Hong, Zhang Jianqiu. Improvement and optimization of a fuzzy c-means clustering algorithm [ C ]//Proceedings of The 18th IEEE Instrumentation and Measurement Technology Conference. Budapes: IEEE, 2001 : 1430 - 1433
  • 9Choi D H, Oh S Y. A new mutation rule for evolutionary programming motivated from backproagation learning [ J ]. IEEE Transactions on Evolutionary Computation, 2000, 4 (2) : 188 - 190

二级参考文献5

  • 1朱宝鎏 朱荣昌 等.作战飞机效能评估[M].北京:航空工业出版社,1993..
  • 2Mulgund S, Harper K, Krishnakumar K, Zacharias G. Air Combat Tactics Optimization Using Stochastic Genetic Algorithms. IEEE Intl Conference on Systems, Man, and Cybernetics, San Diego: 1998. 3136~3141.
  • 3Mulgund S, Harper K, Krishnakumar K, Zacharias G. Large-Scale Air Combat Tactics Optimization Using Genetic Algorithms. AIAA Journal of Guidance, Control and Dynamics, 2001, 24(1) : 140~ 142.
  • 4Krishnakumar K, Swaminathan R, Garg S, Narayanaswamy S. Solving Large Parameter Optimization Problems Using Genetic Algorithms. Proc of the Guidance, Navigation, and Control Conference, Baltimore: 1995.
  • 5李林森,佟明安.协同多目标攻击空战决策及其神经网络实现[J].航空学报,1999,20(4):309-312. 被引量:53

共引文献11

同被引文献49

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部