期刊文献+

液态锂铅合金残渣中微量氚的回收 被引量:4

On the more efficient trace tritium recovery from the residue of liquid Li-Pb alloy
下载PDF
导出
摘要 氚提取的系统设计中,如何严格限制氚损失和减小其辐射风险是非常重要的问题。利用同位素交换法对模拟液态锂铅合金残渣中的微量氚进行回收。研究结果表明,同位素交换法对液态锂铅合金残渣中的氚回收是有效的;交换载带气的最佳组成为He+0.1%D2。载带气相同时,交换温度和交换次数对渣中氚的回收率有显著影响。温度越高、交换次数越多,氚回收率越高;823K时,经过6次交换后的氚回收率接近80%。此外,依据气体与液态金属接触的动力学数学模型,推导出了锂铅合金滞留氚量释放的数学近似表达式。 The present paper is aimed at introducing our study on how to reduce the loss of tritium effectively and to minimize the radioactive exposure, in the process of trace tritium recovery from the residue of liquid Li-Pb alloy. For this purpose, we have investigated the isotope exchange process for the trace recovery from the imitative residue of the alloy. Our study results indicate that the isotope exchange system we have developed is an effective way for such recovery practices with the best component of exchange carrier gas being He + 0.1% D2 and the optimal exchange temperatures and excfiange data being the main influential factors to the recovery efficiency. As the actual process shows, the trace tritium recovery efficiency is likely to increase with the rising of the exchange temperature and exchange amount. The highest tritium recovery efficiency can be made to reach 80% with the residue treated at 6 times at 823 K. In addition, we have also worked out a dynamic mathematical model for liquid metal recovery in the medium of gaseous atmosphere and the approximate mathematical equation of tritium residue in Li-Pb alloy on the basis of our experiments. Theoretical analysis of these data shows that the overall desorption process is likely to be governed by the diffusion of tritium atoms in the Li-Pb and by the heterogeneous reaction at the gas-eutectic interface of the tritium atoms recombination. Howeyer, for the time being, it remains impossible to deduce any kinetic parameters, such as the diffusion coefficient of tritium and the reaction rate of tritium on the alloy surface, for the tritium residence time involves a few other processes. Therefore, further investigations are needed to test the variables the amount and surface area of the sample may involve.
出处 《安全与环境学报》 CAS CSCD 2008年第1期69-72,共4页 Journal of Safety and Environment
关键词 放射性三废处理 处置技术 锂铅合金 核聚变反应堆 氚回收 同位素交换 disposal technology of three radioactivity wastes Li-Pb alloy nuclear fusion reactor tritium recovery isotope exchange
  • 相关文献

参考文献7

  • 1谢波,王和义,刘云怒,官锐.ITER中国液态锂铅实验包层模块氚提取系统设计[J].核科学与工程,2006,26(3):271-275. 被引量:17
  • 2DZIEWINSKI J, LUSSIEZ G W. Developing a process to neutralize water - reactive wastes, LA - UR - 94 - 363 [ R]. Vienna: International Atomic Energy Agency, 1994.
  • 3WEIYongjun(蔚勇军) SHIYan(石岩).Trace tritium recovery from decomposition residue of Li (DT) .工程材料,2004,3(3):44-46.
  • 4MALARA C. Tritium extraction from Pb- 17Li by bubble columns[J]. Fusion. Technology, 1995, 28(4) : 693.
  • 5TOMPKINS A. The chemisorption of gases on metals [ M]. London: Academic Press, 1978: 130.
  • 6DWORSCHAK H, MALARA C, RICAPITO I, et al. Comparative analysis of tritium recovery methods from Pb - 17Li water-cooled blanket [J]. Fusion Technology, 1995, 28(3) : 578.
  • 7WANG Peixuan(王佩璇),SONG Jiashu(宋家树).Helium in materials and the permeation of tritium (材料中的氦及氚渗透)[ M]. Beijing: National Defence Industry Press, 2002 : 58.

二级参考文献4

  • 1吴宜灿,汪卫华,刘松林,李静惊,王红艳,陈红丽,陈明亮,张士杰,黄群英,黄德所,郑善良,曾勤,胡丽琴,柏云清,章毛连,李艳芬,李春京,冯岩,宋勇,龙鹏成,FDS课题组.聚变发电反应堆概念设计研究[J].核科学与工程,2005,25(1):76-85. 被引量:47
  • 2吴宜灿,汪卫华,刘松林,黄群英,郑善良,王红艳,陈红丽,陈明亮,柏云清,宋勇,章毛连,柯严,李春京,李艳芬,胡丽琴,刘萍,李静惊,李莹,许德政,曾勤,陈义学.ITER中国液态锂铅实验包层模块设计研究与实验策略[J].核科学与工程,2005,25(4):347-360. 被引量:47
  • 3Boccacccini L V. Design description document for the european helium cooled pebble bed(HCPB) test blanket module, FZKA 6723,2002.
  • 4Futterer M A, et al. Design development and manufacturing sequence of the European water-cooled Pb-17Li test blanket module. Fusion Engineering and Design[J],1998,39-40 : 851-858.

共引文献16

同被引文献45

  • 1吴伟.溴化锂溶液的制备[J].新疆有色金属,2004,27(3):23-24. 被引量:1
  • 2游清治.锂在热核反应中的应用[J].新疆有色金属,1996,19(1):113-114. 被引量:6
  • 3谢波,王和义,刘云怒,官锐.ITER中国液态锂铅实验包层模块氚提取系统设计[J].核科学与工程,2006,26(3):271-275. 被引量:17
  • 4TOMOHIRO K, MASABUMI N. [ J]. Fusion Science and Technology, 2004,46(12) : 561-569.
  • 5NISHIKAWA M, KINJYO T. [ J]. Journal Nuclear Materials, 2004,87(2) : 325-330.
  • 6SHIZUME K, HATANO Y. [ J ]. Fusion Technology, 1995,28 : 1173-1190.
  • 7YASUHISA O. [J] .Fusion Science and Technology,2002,41 (6) :373-377.
  • 8CAUSEY R A, SLECK L M. [ J ]. Fusion Technology, 1985,36(8) :2284-2288.
  • 9SUGISAKI M. [J] .Journal Nuclear Materials, 1991,179:132-135.
  • 10SHIRAISHI T. [ J]. Journal Nuclear Materials, 1999,273 : 60-65.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部