摘要
设f是以L(f)为最小上界Lipschitz常数、以ρ(f)为谱域半径、以r(f)为Gerschgorim域半径的有限维非线性Lipschitz算子.本文证明了“存在等价范数‖·‖使L(f)=r(f)”的Sderlind猜想;给出反例否定了Sderlind的另一个猜想:“存在等价范数‖·‖使L(f)r(f)”(注意r(f)与r(f)的区别),同时也否定了“ε>0,存在等价范数‖·‖ε使Lε(f)ρ(f)+ε”的猜想.作为以上所获结论的应用,本文将有关Daugavet方程的相应结果推广到了非线性算子情形.
Let f:D C m C m be a nonlinear Lipschitz operator with the 1.u.b. Lipschitz constant L(f) , the radius of Gerschgorim region r(f) and the radius of spectral region ρ(f) . In this paper it is justified the Sderlind's conjecture that there is an equivalent norm ‖·‖ * such that L *(f)=r *(f) , and disproved his another conjecture “there is an equivalent norm ‖·‖ * such that L *(f)r(f) ”. The counterexample presented disproved also the conjecture “For any ε >0, there is an equivalent norm ‖·‖ ε so that L ε(f)ρ(f)+ε ” proposed by Wang and Xu (this journal, 38:5 (1995), 628-631). As an applications of the confirmed Soderlind's conjecture,some fundamental identities on Daugavent equation related to a linear operator are generalized to the nonlinear case.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1997年第5期701-708,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
西安交通大学博士论文基金
关键词
Lipschitz算子
Soederlind猜想
非线性算子
Nonlinear Lipschitz operator, lub Lipschitz constant, lub Dahlquist constant, radius of Gerschgorim field, radius of spectral field, Sderlind's conjectures