摘要
本文首先将Hal定理推广为:设N为G的正规子群,若N为Enπ群,G/N为Dπ群,则G为Dπ群.在此基础上得到了群G为Enπ群的充要条件为:(1)G存在正规子群N,满足N及G/N为Enπ群;(2)对任意p∈π,任意q∈π{p}及任意p元素x,CG(x)含G的Sylowq子群.另外,我们对非Able单群的情形也进行了一些讨论.
In this paper the Hall's theorem is first generalized as follows: Let N be a normal subgroup of a finite group G . If N is an E n π group and G/N is a D π group, then G is a D π group. On the basis of this, we show that a finite group G is an E n π group if and only if (1) there exists a normal subgroup N of G such that N and G/N are E n π groups; and (2) for any p∈π, any q∈π-{p} , and any p element x,C G(x) contains a Sylow q subgroup of G . At the same time we have some discussions for nonabelian simple groups.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1997年第5期709-712,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金