摘要
建立了低渗透非达西渗流带Stefan条件的动边界模型并且将动边界问题理论解的存在性转化为某一积分变换的不动点问题;然后提出几个重要命题,最后利用不动点定理和极值原理进行证明,这几个命题为证明模型理论解的存在惟一性,并进一步讨论模型数值解奠定了基础.
A moving boundary model of non - darcy percolation in low permeability reservoir with Stefan condition is set up ; meanwhile, the problem of existence of the theory solution of the moving boundary is changed into a problem of the fixed point of an integral transformation. Several propositions are given and based on the fixed point theorems and extreme value principle, they are proved. It enables us to prove the existence of the theory solution of the model unique, and it also can lay the foundation for further discussion about the numerical solution of the model.
出处
《宜宾学院学报》
2007年第12期18-20,共3页
Journal of Yibin University
基金
宜宾学院青年基金(QJ05-02)
关键词
非达西渗流
动边界问题
不动点定理
极值原理
Non -darcy Flow
Moving Boundary Problem
Fixed Point Theorem
Extreme Value Principle