期刊文献+

l1,l2,l∞范数下带约束的最小化最近距离和问题 被引量:1

Solving constrained closest minisum location problems under l_1,l_2,l_∞-norms
下载PDF
导出
摘要 研究设备定位领域内的最小化距离和问题.与以往研究不同的是,文章用需求区域代替距离和问题中的需求点.问题的目标是在平面上的某约束区域内定位一个新的设备,使得新设备到各个需求区域的最近点的加权距离和达到最小,其中距离用lp范数来度量,称之为带约束的最小化最近距离和问题.此问题首先被转化为等价的变分不等式问题,此等价的转化使得投影收缩方法可用于求解相应的变分不等式.算法得到的序列收敛到问题的最优点.最后给出数值实验,实验结果证明算法是有效的. This paper investigated a constrained minisum location problem with the demand points replaced by demand regions. The objective was to locate a new facility in a constrained area such that the sum of weighted distances from the facility to the closest points of demand regions was minimized. The distances were measured by lp -norms. This problem was transformed into an equivalent linear variational inequality. This transformation allowed that the problems under three popular distance measuring functions ( l1,l2,l∞ - norms) could be solved. It was assured that the iterates acquired by our suggested algorithm would converge to the optimal solution of the problem. Preliminary computational results were reported, which showed that the suggested algorithm was promising.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2008年第1期21-24,共4页 Journal of Anhui University(Natural Science Edition)
关键词 带约束 Weber问题 需求区域 变分不等式 PC方法 constrained Weber problem demand region variational inequality projection - contractionmethod
  • 相关文献

参考文献6

  • 1Brimberg J, Wesolowsky GO. Note: facility location with closest rectangular distances[ J ]. Naval Research Logistics, 2000,47( 1 ) :77 - 84.
  • 2Brimberg J, Wesolowsky GO. Minisum location with closest Euclidean distances [ J ]. Annals of Operations Research, 2002, 111(1):151-165.
  • 3Cooper L. Location - allocation problems [ J ]. Operations Research, 1963,11 ( 3 ) :331 - 343.
  • 4B.S. He(Department of Mathematics, Nanjing University, Nanjing, China).A MODIFIED PROJECTION AND CONTRACTION METHOD FOR A CLASS OF LINEAR COMPLEMENTARITY PROBLEMS[J].Journal of Computational Mathematics,1996,14(1):54-63. 被引量:12
  • 5Ostresh LM. On the convergence of a class of iterative methods for solving the Weber Location Problem [ J ]. Operations Research, 1978, 26 (4) :597 - 609.
  • 6Weiszfeld E. Sur le point pour lequel la somme des distances de n points donn es est minimum [ J ]. Tohoku Mathematical Journal, 1937,43 (3) :355 - 386.

共引文献11

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部