期刊文献+

一种鲁棒特征提取算法的设计和实现

Design and Implement of Robust Feature Extraction Algorithm
下载PDF
导出
摘要 提出了一种用于语音识别的鲁棒特征提取算法,这种算法基于最小方差无失真响应(MVDR)谱估计技术,它在Mel频率尺度上估计MVDR谱,并对得到的MVDR谱进行调制谱滤波,然后提取其倒谱系数作为特征参数。使用这种算法设计了一个抗噪孤立词语音识别系统,在汽车噪声,人群噪声和高斯白噪声三种噪声环境下,与传统算法按多种信噪比做了对比实验。实验结果表明该系统在这三种噪声环境下的识别率均得到了不同程度的提高。 A robust feature extraction algorithm for speech recognition was proposed, This algorithm is based on the Minimum Variance Distortionless Response (MVDR) spectrum estimation method. It estimates MVDR spectrum at Mel frequency scale and filters the modulation spectrum of the MVDR spectrum, then the cepstrum coefficients are extracted as the feature parameter. A robust isolated word speech recognition system based on this algorithm was designed. Experiments were conducted to compare the proposed algorithm with traditional feature extraction algorithms under different levels of car noise, babble noise and gauss white noise, The results indicate that the recognition accuracy of this system has been improved at some degrees under the three noise conditions.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第4期931-934,共4页 Journal of System Simulation
关键词 语音识别 MVDR谱 调制谱 噪声 speech recognition MVDR spectrum modulation spectrum noise
  • 相关文献

参考文献13

  • 1Capon J. High-resolution frequency-wavenumber spectrum analysis [J]. Proceedings of the IEEE (S0018-9219), 1969, 57(8): 1408-1418.
  • 2Murthi M N, Rao B D. All-pole model parameter estimation for voiced speech [C]//IEEE Workshop on Speech Coding for Telecommunications Proceeding. Pocono Manor, PA, USA: IEEE, Sept 1997: 17-18.
  • 3Murthi M N, Rao B D. All-pole modeling of speech based on the minimum variance distortionless response spectrum [J]. IEEE Transactions on Speech and Audio Processing (S1063-6676), 2000, 8(3): 221-239.
  • 4Dharanipragada S, Rao B D. MVDR based feature extraction for robust speech recognition [(2]// IEEE International Conference on Acoustics Speech and Signal Processing. Salt Lake City, UT, USA: IEEE, 2001: 309-312.
  • 5Dharanipragada S. Feature extraction for robust speech recognition [C]// IEEE International Symposium on Circuits and Systems. Phoenix-Scottsdale, AZ, USA: IEEE, May 2002: 855-858.
  • 6Lacoss R T. Data adaptive spectral analysis methods [J]. Geophysics (S0016-8033), 1971, 36(4): 661-675.
  • 7Haykin S. Adaptive Filter Theory, 4th ed [M]. USA: Prentice-Hall Inc, 2002.
  • 8Harma A, Laine U K. A comparison of warped and conventional linear predictive coding [J]. IEEE Transactions on Speech and Audio Processing (S1063-6676). 2001, 9(5): 579-588.
  • 9Kruger E, Strube H W. Linear prediction on a warped frequency scale [J]. IEEE Transactions on Acoustics Speech and Signal Processing (S0096-3518), 1988, 36(9): 1529-1531.
  • 10Marple S L, Lawrence S. Digital Spectral Analysis with Applications [M]. USA: Prentice-Hall, Inc, 1987.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部