期刊文献+

基于数据分区的负荷密度显示的实现 被引量:1

Implement of visualization of load density based on data-partitioning
下载PDF
导出
摘要 以Arc/info作为开发平台,提出电力系统区域负荷密度分区显示的实现方法,将地理信息系统与电力系统节点数据相结合,应用最近邻优先吸收算法将区域负荷节点进行分区,并结合实例表明该方法简洁可靠,能够满足实际需要。 This paper introduces how to implement the visualization for load density based on data-partitioning. By combining geographical information with nodal operation data of power system, making the regional nodes of load clustered by using Nearest Neighbors Absorbed First clustering algorithm. Example on test grid shows that the proposed method is simple, reliable and competent for the practical operation of power network.
出处 《继电器》 CSCD 北大核心 2008年第3期42-44,55,共4页 Relay
关键词 负荷密度 GIS ARC/INFO 最近邻优先吸收法 load density GIS: ARC/INFO: Nearest Neighbors Absorbed First
  • 相关文献

参考文献8

二级参考文献25

  • 1郭海湘,诸克军,刘涛.我国全要素生产力的模糊聚类[J].长春工程学院学报(自然科学版),2003,4(4):54-56. 被引量:1
  • 2邱家驹,李军.配电网络地理信息系统[J].电力系统自动化,1997,21(3):13-16. 被引量:43
  • 3Elakervi E J Holmes.配电网络规划与设计[M].北京:中国电力出版社,1999.123-133.
  • 4Robet S Pindyck.Daniel L Rubinfeld.计量经济学模型与经济预测(第4版)[M].钱小军译.北京:机械工业出版社,1999.
  • 5肖围泉,王春,张伟福.电力负荷预测[M].北京:中国电力出版社,2000.
  • 6Han J W, Kambr M. Data mining concepts and techniques[M]. Beijing: Higher Education Press, 2001. 145~176.[2]Kaufan L, Rousseeuw P J. Finding groups in data: an introduction to cluster analysis[M]. New York: John Wiley & Sons, 1990.
  • 7Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases[A]. Haas L M, Tiwary A. Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Seattle: ACM Press, 1998. 73~84.
  • 8Ester M, Kriegel H P, Sander J, et al. A density based algorithm for discovering clusters in large spatial databases with noise[A]. Simoudis E, Han J W, Fayyad U M. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining[C].
  • 9Agrawal R, Gehrke J, Gunopolos D, et al. Automatic subspace clustering of high dimensional data for data mining application[A]. Haas L M, Tiwary A. Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Seattle: ACM Press, 1998.
  • 10Zhang T,Ramakrishnan R,Livny M. BIRCH:an efficient data clustering method for very large database[R].Computer Sciences Dept,Univ of Wisconsin-Madison,1995.

共引文献44

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部