期刊文献+

基于混沌因子及相空间重构后的神经网络短期电价预测的研究 被引量:9

Short-term price forecasting based on chaotic property and phase space recostructed neural networks
下载PDF
导出
摘要 影响电价因素众多,但在现实中不可能获得所有信息的资料,在这种信息不完全的情况下,为了更好地提高电价预测精度,通过分析电价和负荷时间序列的混沌性,用C-C方法分别重构其相空间,揭示出其本身蕴涵的规律,并采用数据挖掘技术中的相似搜索技术,挖掘出与预测日变化规律最相似的时间序列作为样本,利用BP神经网络这一具有高度自学习自适应能力的网络,拟合电价序列的重构函数。利用美国PJM电力市场的实际数据进行了实例预测,结果显示出良好的预测精度,并比传统BP网络能更好地预测休息日电价。 There are many factors which can affect the electricity prices, but in fact, we can not get all of the information of these factors. In this state, to improve the predictive precision, this paper analyzes the chaotic property of the price and load time series and reconstructs the attractors using C-C theory. Besides, the similarity search technique in data mining is adopted to find the most similar time series as training date. Then BP neural network which has high ability to self learning and self adapting is used to find the reconstructive function. The actual data of American PJM power market is forecasted based on the theory above. The results have good predictive precision, especially in rest days.
出处 《继电器》 CSCD 北大核心 2008年第1期48-51,72,共5页 Relay
关键词 电价预测 混沌理论 BP神经网络 数据挖掘技术 C-C法 price forecasting chaotic property BP neural network data mining C-C theory
  • 相关文献

参考文献4

  • 1吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2003.
  • 2Kim H S, Eykholt R, Salas J D. Nonlinear Dynamics, Delay Times,and Embedding Windows[J]. Physica D, 1999, 127: 48-60.
  • 3魏平,李均利,陈刚,张永吉.基于小波分解的改进神经网络MCP预测方法及应用[J].电力系统自动化,2004,28(11):17-21. 被引量:40
  • 4Han J, Kamber M. Data Mining Concepts and Techniques[M].Beijing: China Machine Press, 2001.

二级参考文献1

  • 1[5]Nogales F J, Contreras J, Conejo A J, et al. Forecasting Nextday Electricity Prices by Time Series Models. IEEE Trans on Power Systems, 2002, 17(2): 342~348

共引文献43

同被引文献122

引证文献9

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部