期刊文献+

DSP视频监控中运动目标检测方法研究 被引量:2

Moving Object Detection Techniques in Intelligent Video Surveillance System Implemented by DSP
下载PDF
导出
摘要 对高斯模型的更新做出改进,以找到一种快速、有效的、适合DSP运算的算法。高斯模型的参数对背景模型判别产生的影响是不同的,因此它们的更新对于背景模型判别产生的影响也是不相同的。学习率直接影响模型参数的更新,如果对所有参数采用同一学习率,当学习率取值比较大,适应环境变化能力强,但容易受噪声影响,不够稳定;当学习率取的比较小,适应环境变化的能力就低,但是具有鲁棒性。利用均值和方差对背景模型判别影响不同这一特性,对均值和方差的更新采用不同的学习率,在保持可行的算法复杂度的情况下,使背景模型能够适应背景的变化。 Improving the update of Gaussian model is a viable way to find a fast and effective algorithm adapted to DSP implementation. Different parameters have different influences on the Gaussian model, so do their updating. And, the updating of parameters is affected by the updating frequency directly. If all of the parameters use the same updating frequency, Gaussian model is more adaptable to the variational background when the value of the updating frequency is a bigger one, but it is unstable and sensitive to the noise; whereas, when the value of the updating frequency is a smaller one, the model is unadaptable to the variational background, but is of robustness. Mean and mean square error have different effects on the distinguishing of Gaussian model, which can be used to the improve-ment. Using different frequencies for mean and mean square error, the model can be more adaptable to the variational background, while keeping the acceptable complexity of algorithm.
作者 徐璟
出处 《计算机仿真》 CSCD 2008年第2期261-264,共4页 Computer Simulation
关键词 运动目标 视频监控 高斯 检测 Moving object Intelligent video surveillance Gaussian Detection
  • 相关文献

参考文献14

  • 1Stauffer C,GrimsenW.E.L.Adaptive background mixture models for real-time tracking[C].In Computer Vision and Pattern Recognition,246-252.
  • 2A Vefri,S Uras,E DeMicheli.Motion segmentation from optical flow[C].In:Proc the 5th Alvey Vision Conference,Btighton,UK,1989:209-214.
  • 3J Barron,F D leet,S Beauchemin.Performance of optical flow techniques[J].International journal of computer vision,1994,12(1):42-77.
  • 4Y Mae,Y Shirai,M J iura,Y Kuno.Object tracking in cluttered background based on optical flow and edges[C].In:Proc the 13th InternationaI Conference on Pattern Recognition,1996.196-200.
  • 5Y Mae,et al.Optical Flow Based Realtime object tracking by active vision system[C].In:Proc.2nd Japan-France Congress on Mechatronics,1994.545-548.
  • 6A Neri,et al.Automatic moving object and background separation[J].Signal Processing,1998,66:219-232.
  • 7R Mech,M Wollborn.A noise robust method for segmentation of moving objects in video sequences[C].In:Proc International Conference on Acoustics,Speech and Signal Processing,1997.41-45.
  • 8O N hta.A Statistical Approach to Background Subtraction for Surveillance Systems[J].In Int.Conf.Computer Vision,volume 2,2001.481-1486.
  • 9Anurag Mittal,Nikos Paragios.Motion-based background subtraction using adaptive kernel density estimation[C].In CVPR04,2:302-309.
  • 10T Horprasert,D Harwood,L Davis.A Statistical approach for real-time robust background subtraction.and shadow detection [C],In:Proc.ICCV99:1-19.

二级参考文献4

  • 1[1]Collins Robert T, Lipton Alan J. Takeo Kanade. Introduction to the Special Section on Video Surveillance[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(8): 745-746.
  • 2[2]Lipton A, Fujiyoshi H, Patil R S. Moving Target Classification and Tracking from Real-Time Video[R]. IEEE Proc. on WACV, 1998, 10: 8-14.
  • 3[3]Collins Robert T, Lipton Alan J, Takeo Kanade. Learning Patterns of Activity Using Real-Time Tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2000, 22(8): 747-757.
  • 4[4]Murat Tekalp. Digital Video Processing[M]. Prentice Hall Inc., 1995.

共引文献30

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部