期刊文献+

基于串归约的网格工作流费用优化方法 被引量:22

Cost Optimization Heuristics for Grid Workflows Scheduling Based on Serial Reduction
下载PDF
导出
摘要 针对截止期限约束下有向无环图DAG(directed acyclic graph)表示的工作流费用优化问题,提出两个新的费用优化算法:时间约束的前向串归约算法FSRD(forward serial reduction within deadline)和时间约束的后向串归约算法BSRD(backward serial reduction within deadline).算法利用DAG图中串行活动特征给出串归约概念;基于分层算法对串归约组的时间窗口重定义,并提出动态规划的求解策略实现组内费用的最优化.两种归约算法综合考虑DAG图中活动的串并特征,改变分层算法中仅对单一活动的费用优化策略,实现了串归约组的时间收集和最优利用.模拟实验结果表明:BSRD和FSRD能够显著改进相应分层算法的平均性能,且BSRD优于FSRD. Workflow scheduling which guarantees the anticipated QoS (quality of service) is a fundamental and complexity problem in computational grids. In this paper, the scheduling of workflows represented by directed acyclic graph (DAG) with the objective of cost minimization is considered. In general, the optimization problem is NP-hard. Two new heuristics, FSRD (forward serial reduction with deadline) and BSRD (backward serial, reduction with deadline) are proposed. According to the property of serial activities, a new concept called series reduction (SR) is defined. The time window for each serial reduction group is recalculated based on leveling algorithms. A dynamic programming method is presented for implementing the cost minimization of each serial reduction group. By integrating the local optimization strategy with two leveling algorithms (DBL and DTL), BSRD and FSRD are investigated. The two heuristics take into account comprehensive serial and parallel properties of DAG, and improve the cost optimization strategies adopted by leveling algorithms. Experimental results show that BSRD and FSRD can considerably improve the average performance of corresponding leveling heuristics. For pipeline workflows, BSRD (FSRD) can achieve the optimal solutions but require a little more computational time. For hybrid workflows, BSRD can save 8.77 % average cost of DBL and FSRD can save 6.00% average cost of DTL. Moreover, BSRD outperforms FSRD. As well, the impact of serial reduction ratio on two heuristics is analyzed.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第2期246-253,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60672092,60504029)
关键词 服务网格 有向无环图 工作流 启发式算法 串归约 service grid directed acyclic graph workflow heuristics serial reduction
  • 相关文献

参考文献12

  • 1I Foster, C Kes.selman, J M Nick, et al. Grid service for distributed system integration [J]. IEEE Computer, 2002, 35 (6) : 37-46.
  • 2K Czajkowski. The WS-resource framework [OL]. http:// www.globus.org/wsrf/specs/ws-wsrf. pdf, 2004.
  • 3E Deelmanl, J Blythel, et al. Mapping abstract complex workflows onto grid environments [J]. Journal of Grid Computing, 2003, 1 (1) : 25-39.
  • 4L Z Zeng, B Benatallah, A H H Ngu, et al. QoS-aware middleware for Web services composition [J]. IEEE Trans on Software Engineering, 2004, 30(5): 311-327.
  • 5Chengwen Zhang, Sen Su, Junliang Chen, DiGA: Population diversity handling genetic algorithm for QoS-aware Web services selection [ J ]. Computer Communications, 2007, 30 (3) : 1082 -1090.
  • 6王勇,胡春明,杜宗霞.服务质量感知的网格工作流调度[J].软件学报,2006,17(11):2341-2351. 被引量:60
  • 7金海,陈汉华,吕志鹏,宁小敏.CGSP作业管理器合成服务的QoS优化模型及求解[J].计算机学报,2005,28(4):578-588. 被引量:53
  • 8张伟哲,胡铭曾,张宏莉,刘凯鹏.多QoS约束网格作业调度问题的多目标演化算法[J].计算机研究与发展,2006,43(11):1855-1862. 被引量:23
  • 9Rajkumar Buyya, David Abramson, Jonathan Giddy, et al. Economic models for resource management and scheduling in grid computing, concurrency and computation [J]. Practice and Experience Joumal, Special Issue on Grid Computing Environments, 2002, 14(13-15) : 1507-1542.
  • 10陈宏伟,王汝传.费用-时间优化的网格有向无环图调度算法[J].电子学报,2005,33(8):1375-1380. 被引量:14

二级参考文献57

  • 1张伟哲,刘欣然,云晓春,张宏莉,胡铭曾,刘凯鹏.信任驱动的网格作业调度算法[J].通信学报,2006,27(2):73-79. 被引量:33
  • 2张伟哲,方滨兴,胡铭曾,张宏莉.基于信任QoS增强的网格服务调度算法[J].计算机学报,2006,29(7):1157-1166. 被引量:51
  • 3Ememann C, Hamscher V, Yahyapour R. Economic scheduling in grid computing[A].Jab Scheduling Strategies for Parallel Processing, 8th International Workgshop, JSSPP 2002 [ C ]. Berlin, Germany: Springer-Verlag,2002.128 - 152.
  • 4Moreno R, Alonso-Conde A B.Jab scheduling and resource management techniques in economic grid environments[ A]. Grid Computing. First Acres Grids Conference [C]. Berlin, Germany: Springer-Ver-lag,2003,25 -32.
  • 5Buyya R,Murshed M. GridSim: A toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing[J].Concurrency and Computation Practice & Experience,2003.14(13 - 15):1175 - 1220.
  • 6Feng H L,et al.A deadline and budget constrained cost-time optimization algorithm for scheduling dependent tasks in grid computing [ A ].Grid and Cooperative Computing. Second International Workshop ( CCC 2003) [ C ]. Berlin, Germany: Springer-Verlag, 2003.113 - 120.
  • 7Gerasoulis A, Yang T. A comparison of clustering heuristics for scheduling directed acyclic graphs of multiprocessors[J]. Journal of Parallel and Distributed Computing, 1992,16(4) :276 - 291.
  • 8Kwok Y K, Amad I. Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors[J]. IEEE Transactions on Parallel and Distributed Systems, 1996,7 (5) : 506 -521.
  • 9Malloy B A,Lloyd E L, Soffa M L. Scheduling DAG's for asynchronous multiprocessor execution[J]. IEEE Transactions on Parallel and Distributed Systems, 1994,5(5) :498 - 508.
  • 10Foster I, Kesselman C, Tuecke S. The anatomy of the grid: Enabling scalable virtual organizations[J]. International Journal of High Performance computing Applications,2001,15(3) :200 - 222.

共引文献132

同被引文献149

引证文献22

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部