摘要
用Fourier谱方法研究了一类二维非线性Schrodinger方程及其周期初值问题,构造了半离散的Fourier谱逼近格式.用积分估计方法得到了离散解的一致先验积分估计,并用紧致性原理证明了连续方程大时间问题整体光滑解的存在惟一性,与半离散格式的大时间收敛性.
The Fourier spectral method for large time problem of a class of two-dimensional nonlinear schrdinger equation is studied with periodic initial value conditions.First,a semidiscrete Fourier spectral scheme is constructed,and the uniformly priori estimation of approximation solution is proved by means of integral estimate method.Furthermore,the existence and the uniquence of global smooth solution for large time problem of continuous equation are given by the compactness theorem.Finally,the long time convergence of semidiscrete scheme is proved.
出处
《哈尔滨理工大学学报》
CAS
1997年第4期76-80,共5页
Journal of Harbin University of Science and Technology
基金
黑龙江省自然科学基金
关键词
薛定谔方程
非线性
大时间问题
傅里叶谱
Schrdinger equation
Fourier spectral method
large time convergence