摘要
运用优函数原理,当函数的k-1(k≥2)次导数满足Lipschitz条件时,证明了牛顿法的收敛性。这个结果推广了Kantorovich的经典工作,也包含了Smale的相应工作。
The convergence of Newton's method is verivfied by using the technique of majorizing function under the hypothesis that the (k-1)-th derivative of the function satisfies Lipschitz condition, where k≥22. This result extends the classical work of Kantorovich and contains the corresponding work of smale.
出处
《浙江工业大学学报》
CAS
1997年第3期230-235,共6页
Journal of Zhejiang University of Technology
关键词
牛顿法
优函数
收敛定理
李普希兹条件
Newton's method
Majorizing function
Lipschitz condition
Convergence theorem