期刊文献+

基于连续时间无规行走模型研究反常扩散 被引量:5

Approach of continuous time random walk modelto anomalous diffusion
原文传递
导出
摘要 基于连续时间无规行走(CTRW)理论,数值研究了布朗粒子的欠扩散、正常扩散和超扩散三种扩散行为.解决了CTRW模型的跳跃步长和等待时间分布函数的可实现化问题,对Metropolis抽样方法进行了改进以适用于周期势.探讨了布朗马达依靠闪烁棘轮和摇摆棘轮整流反常扩散所获得的定向速度,结果显示,闪烁布朗马达定向流极大值出现在超扩散条件下;摇摆布朗马达定向流最大值出现在弹道扩散条件下. A numerical method based on the continuous time random walk (CTRW) theory is developed to study the normal diffusion and anomalous diffusion including both sub-diffusion and super-diffusion. The probability density functions for both the jump distance and the residence time in the CTRW model are determined as well as the Metropolis sampling method in the periodic potential has been improved. The directional transport of a Brownian motor in both a flashing ratchet potential and a rocking ratchet potential is investigated. Our results have shown that the maximum of directional current occurs in the case of superdiffusion in a flashing ratchet and in the case of ballistic diffusion in a rocking ratchet.
作者 林方 包景东
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第2期696-702,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10674016) 教育部博士点基金(批准号:20050027001)资助的课题.~~
关键词 无规行走 反常扩散 Metropolis抽样 棘轮势 continuous time random walk (CTRW), anomalous diffusion, Metropolis sampling method, ratchet potential
  • 相关文献

参考文献20

  • 1Einstein A 1905 Ann. Phys. (Leipzig) 17 549
  • 2Kramers H A 1940 Physica 7 284
  • 3Chandrasekhar S 1943 Rev. Mod. Phys. 15 1
  • 4Wang M C, Uhlenbeck G E 1945 Rev. Mod. Phys. 17 323
  • 5Risken H 1984 The Fokker-Planck Equation (Berlin Heidelberg: Springer-Verlag) p1-12
  • 6Metzler R, Klafter J 2000 Phys. Rep. 339 1
  • 7Metzler R, Klafter J 2004 J. Phys. A 37 R161
  • 8Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104
  • 9包景东.分数布朗运动和反常扩散[J].物理学进展,2005,25(4):359-367. 被引量:17
  • 10Kun L, Bao J D 2005 Phys. Rev. E 72 067701

二级参考文献28

  • 1Einstein A.Ann Phys (Leipzig),1905,17:549.
  • 2Kramers H A.Physica,1940,7:284.
  • 3Chandrasekhar S.Rev Mod Phys,1943,15:1.
  • 4Risken H.The Fokker-planck Equation (Springer,Berlin,1989).
  • 5Toda M,Kubo R,Saito N.Statistical Physics Ⅱ (Springer-Verlag,Second Corrected Printing,1995).
  • 6Klafter J,Shlesinger M F,Zumofen G.Phys.Today,1996,February:33.
  • 7Metzler R,Klafter J.Phys Rep,2000,339:1.
  • 8Metzler R,Klafter J.J Phys,2004,A37:R161.
  • 9Barkai E.Chem Phys,2002,284:13.
  • 10Barkai E.Phys Rev,2001,E63:046118.

共引文献16

同被引文献31

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部