期刊文献+

Schur Functors on QF-3 Standardly Stratified Algebras

Schur Functors on QF-3 Standardly Stratified Algebras
原文传递
导出
摘要 Let A be a QF-3 standardly stratified algebra and f be a Schur functor corresponding to some projective-injective faithful A-module, denoted by Ae. The main result of this paper is to prove that, if the dominant dimension of A is sufficiently large, then ] induces a full embedding from £(△) to eAe-mod which preserves Ext-groups up to certain degrees, where £(△) denotes the full subcategory of A-mod whose objects are filtered by standard A-modules. We check this criterion on some typical examples, quantized Schur algebras Sq(n,r) with n≥r and finite-dimensional algebras associated with the Bernstein-Gelfand-Gelfand category O of semisimple complex Lie algebras. Let A be a QF-3 standardly stratified algebra and f be a Schur functor corresponding to some projective-injective faithful A-module, denoted by Ae. The main result of this paper is to prove that, if the dominant dimension of A is sufficiently large, then ] induces a full embedding from £(△) to eAe-mod which preserves Ext-groups up to certain degrees, where £(△) denotes the full subcategory of A-mod whose objects are filtered by standard A-modules. We check this criterion on some typical examples, quantized Schur algebras Sq(n,r) with n≥r and finite-dimensional algebras associated with the Bernstein-Gelfand-Gelfand category O of semisimple complex Lie algebras.
作者 Ming FANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第2期311-318,共8页 数学学报(英文版)
基金 the AsiaLink Grant ASI/B7-301/98/679-11 the National Natural Foundation of China (Grant No.10501041 and 10301033)
关键词 Schur functor dominant dimension QF-3 algebra standardly stratified algebra Schur functor, dominant dimension, QF-3 algebra, standardly stratified algebra
  • 相关文献

参考文献13

  • 1Green, J. A.: Polynomial representations of GLn, Lecture Notes in Mathematics, 830, Springer-Verlag, Berlin, Heidelberg, New York, 1980
  • 2Donkin, S.: The q-Schur algebra, London Math. Soc., Lecture Notes Serie, 253, Cambridge University Press, Cambridge, 1998
  • 3Doty, S. R., Erdmann, K., Nakano, D. K.: Extensions of modules over Schur algebras, symmetric groups and Hecke algebras. Algebra Representation Theory, 7(1), 67-100 (2004)
  • 4Hemmer, D. J., Nakano, D. K.: Specht filtration for Hecke algebras of type A. J. London Math. Soc., 69(2), 623-638 (2004)
  • 5Kleshchev, A. S., Nakano, D. K.: On comparing the cohomology of general linear and symmetric groups. Pacific J. Math, 201(2), 339-355 (2001)
  • 6Koenig, S., Slungard, I. H., Xi, C. C.: Double centralizer properties, dominant dimensions and tilting modules. J. Algebra, 240, 393-412 (2001)
  • 7Hartmann, R., Paget, R.: Young modules and filtration multiplicities for Brauer algebras. Math. Z., to appear (2006)
  • 8Yamagata, K.: Frobenius algebras, in: Handbook of algebras, Vol. 1,841-887, North-Holland, Amsterdam. 1996
  • 9Cline, E., Parshall, B., Scott, L.: Stratifying endomorphism algebras. Memoirs of Amer. Math. Soc., 124 (591), American Mathematical Society, 1996
  • 10Xi, C. C.: Standardly stratified algebras and cellular algebras. Math. Proc. Cambridge Philos. Soc., 133(1), 37-53 (2002)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部