期刊文献+

Amarts on Riesz Spaces

Amarts on Riesz Spaces
原文传递
导出
摘要 The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math.,15(2004), 435-451). Here we extend the definition of an asymptotic martingale (amart) to the Riesz spaces context, and prove that Riesz space amarts can be decomposed into the sum of a martingale and an adapted sequence convergent to zero. Consequently an amart convergence theorem is deduced. The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math.,15(2004), 435-451). Here we extend the definition of an asymptotic martingale (amart) to the Riesz spaces context, and prove that Riesz space amarts can be decomposed into the sum of a martingale and an adapted sequence convergent to zero. Consequently an amart convergence theorem is deduced.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第2期329-342,共14页 数学学报(英文版)
基金 the John Knopfmacher Centre for Applicable Analysis and Number Theory
关键词 AMART MARTINGALE Riesz space Banach lattice amart, martingale, Riesz space, Banach lattice
  • 相关文献

参考文献28

  • 1Edgar, G. A., Sucheston, L.: Amarts: A class of asymptotic martingales, Parts A and B. J. Multivariate Anal., 6, 193-221,572-591 (1976)
  • 2Edgar, G. A., Sucheston, L.: Martingales in the limit and amarts. Proc. Amer. Math. Soc., 67, 315-320 (1977)
  • 3Edgar, G. A., Sucheston, L.: Stopping times and directed processes, Cambridge, Cambridge University Press, Cambridge, The United Kingdom, 1992
  • 4Egghe, L.: Stopping time techniques for analysts and probabilists, Cambridge University Press, 1984
  • 5Ghoussoub, N.: Orderamarts: A class of asymptotic martingales. J. Multivariate Anal.,9,165-172 (1979)
  • 6Mucci, A. G.: Limits for martingale-like sequences. Pacific J. Math., 48, 197-202 (1973)
  • 7Mucci, A. G.: Another martingale convergence theorem. Pacific J. Math., 64, 539-541 (1976)
  • 8Wang, Z. P.: Convergence of vector-valued pramarts indexed by directed sets. Chinese Ann. Math. Ser. A, 10, 345-350 (1989)
  • 9Xue, X. H.: T-uniform amarts and almost sure convergence in Banach space. Acta Math. Sci. (English Ed.), 5, 85-91 (1985)
  • 10Xue, X. H.: Convergence of pramarts in Banach space. Acta Mathematica Sinica, Chinese Series, 29,389-392 (1986)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部