期刊文献+

基于MHC调控的免疫公式发现算法 被引量:4

MHC Regulation Based Immune Formula Discovering Algorithm
下载PDF
导出
摘要 在分析了基于遗传原理的公式发现方法的优势与不足的基础上,根据免疫原理和MHC(major histocompatibility complex)在免疫系统中的调控作用,提出了一种应用于公式发现领域的算法IFDA(immune formula discovering algorithm)来解决公式进化中优良结构不易保护的问题.该算法将公式翻译成树状图,并按深度优先的编码方法形成抗体的恒定区和可变区代码,把公式片段编码成为MHC代码,借鉴MHC调控原理指导抗体进化,寻找出数据集合中蕴涵的规律,并用公式的形式表示.通过对多组基准数据的实验说明,此方法在公式复杂度和收敛速度方面比基因表达式算法有更好的性能. Aiming at the difficulty in good segments of the formula to be inherited in formula discovering using gene expression programming (GEP), this paper proposes an innovative immune formula discovering algorithm (IFDA), which is actually inspired by MHC (major histocompatibility complex) regulation principle of immune theory. In IFDA, the formula are mapped as a tree structure and transformed into both constant and variation section of antibody with a depth-first mechanism while its fragment is encoded into the MHC. By the feature of MHC regulation, IFDA mines the dataset to discover the proper formula very quickly. Many data are benchmarked for verifying the performance of IFDA in which all results from experiments show that the IFDA can really provide better performance than GEP in both convergence speed and formula complexity.
出处 《软件学报》 EI CSCD 北大核心 2008年第3期650-662,共13页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant No.60275220 (国家自然科学基金) the Science Development Foundation of Shanghai of China under Grant No.012112027 (上海市科技发展基金)
关键词 主要组织相容复合体 免疫原理 公式发现 基因表达式编程 免疫公式发现算法 major histocompatibility complex immune theory formula discovering gene expression programming immune formula discovering algorithm
  • 相关文献

参考文献1

二级参考文献1

共引文献52

同被引文献21

  • 1杨晶,胡珉,吴耿锋.基因表达式编程算法的改进及其应用研究[J].计算机工程与应用,2007,43(6):240-243. 被引量:5
  • 2杜修力,王智慧,李立云,姜丽萍,侯世伟.土钉结构稳定验算的经验遗传–单纯形算法[J].岩土工程学报,2007,29(4):598-602. 被引量:6
  • 3Tsai T.A genetic algorithm for solving the single machine earliness/tardiness problem with distinct due dates and ready times[J]. International Jouranl of Advanced Manufacturing Technology,2007, 31(9/10) :994-1000.
  • 4de Castra L N,Von Zuben.aiNET:An artificial immune network for data analysis[M]//Data Mining:A Heuristic Approach.Abbas H, Sarker R,Newton C.[S.l.]:Ided Group Publishing,2001.
  • 5de Castro L N,Timmis J.Artificial immune system:A new computational intelligence approach[M].New York:Springer,2002.
  • 6Nowak M A. Five rules for the evolution of cooperation[J]. Science ,2006,314 : 1560 - 1563.
  • 7Han B W, Herrin B R, Cooper M D,et al. Antigen recognition by variable lymphocyte receptors [ J ]. Science, 2008, 321 : 1834 - 1837.
  • 8Forrest S, Beauehemin C. Computer immunology [ J ]. Immunological Reviews ,2007,216 ( 1 ) : 176 - 197.
  • 9Chung J S,Jung H K,Hahn S Y. A study on comparison of optimization performance between immune algorithm and other algorithms [ J ]. IEEE Transactions on Mangnetics, 1998,34 (5) :2972 - 2975.
  • 10Klaus Rajewsky. Clonal selection and learning in the antibody system [ J ]. Nature, 1996,381 : 751 - 758.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部