期刊文献+

应用去噪算法的乳腺肿块超声辅助诊断研究

Computerized detection and classification on breast ultrasound using speckle reduction
原文传递
导出
摘要 目的 探讨基于二维均匀性直方图和方向均值滤波的去噪算法对超声图像乳腺肿块的检测与分类的价值。方法 对115例乳腺肿块患者(59例良性和56例恶性)共349个肿块进行超声检查,采用新的去噪算法,对超声图像进行去噪处理,采用双盲法评估,由ROC曲线下面积得出此法的特异性和敏感性。结果 乳腺肿块的超声诊断结果及病理诊断结果符合率明显提高,从原片的61例提高到去噪后图片的81例。当假阳性率为0.356时,去噪后图片的敏感性从87.5%提高至98.2%,ROC曲线下面积从0.843增加到0.955。结论 新的超声图像去噪算法明显地改善了图像质量,提高了乳腺肿块的正确诊断率,减低误诊率,有利于计算机辅助自动识别及分类乳腺肿块。 Objective To evaluate the performance of a computerized detection and cIassification with breast ultrasound (US) images using the novel speckle reduction algorithm based on two-dimensional textural homogeneity histogram and directional average filters. Methods Three hundred and forty-nine US images of 115 cases were analyzed including 59 benign lesions and 56 malignant lesions. By using the novel speckle reduction algorithm, the speckles on breast US images were removed. The original and speckle- reduced images were assessed by radiologists using double blind method. The diagnostic sensitivity and specificity were calculated by the areas under the receiver operating characteristic(ROC) curves. Results The breast lesions which can be diagnosed definitely increased from 61 cases of the original images (32 malignant cases and 29 benign cases) to 81 cases of the speckle-reduced images (43 malignant cases and 38 benign cases). The sensitivity could be raised from 87.5 % to 98.2 % at 0. 356 false-positive detections per image for this detection-plus-classification scheme, and the area under the ROC curve of diagnosis also increased from 0. 843 to 0. 955. Conclusions The novel speckle reduction algorithm was proposed and it can increase the diagnostic accuracy and decrease the rate of missing and misdiagnosis of breast lesions greatly.
出处 《中华超声影像学杂志》 CSCD 2008年第2期136-139,共4页 Chinese Journal of Ultrasonography
关键词 超声检查 乳腺疾病 去噪算法 Ultrasonography Breast diseases Speckle reduction algorithm
  • 相关文献

参考文献9

  • 1Chen DR,Chang RF,Kuo WJ,et al.Diagnosis of breast tumors with sonographc texture analysis using wavelet transform and neural network.Ultrasound Med Biol,2002,28:1301-1310.
  • 2Madjar H,Rickard M,Jellins J,et al.IBUS guidelines for the ultrasonic examination of the breast.Eur J Ultrasound,1999,9:99-102.
  • 3李银珍,黄道中,张青萍,万婕,张超,赵胜,李进兵,周元媛,刘健.乳腺浸润性导管癌超声征象与雌激素受体表达的相关性初探[J].中华超声影像学杂志,2005,14(6):449-451. 被引量:24
  • 4李洪林,姜玉新,郝玉芝,周纯武.乳腺超声与钼靶摄影的比较与联合应用[J].中华超声影像学杂志,2006,15(12):910-913. 被引量:44
  • 5Crawford DC,Tohno E,Bossi C,et al.Adaptive speckle reduction for improving the differential diagnosis of breast lesions.J Ultrasound Med,1991,14:217-227.
  • 6Crawford DC,Cosgrove DO,Tohno E,et al.Visual impact of adaptive speckle reduction on US B-mode images.Radiology,1992,183:555-561.
  • 7Metz CE.ROC methodology in radiologic imaging.Invest Radiol,1986,21:720-733.
  • 8Stavros AT,Thickman D,Rapp CL,et al.Solid breast nodules:use of sonography to distinguish between benign and malignant lesions.Radiology,1995,196:123-134.
  • 9Chen CM,Chou YH,Han KC,et al.Breast lesions on sonograms:computer aided diagnosis with nearly setting-indeendent features and artificial neural networks.Radiology,2003,226:504-514.

二级参考文献18

  • 1Osborne CK, Yochmowitz MG, Knight WA, et al. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer,1980, 46:2884-2888.
  • 2Fisher ER, Osborne CK, McGuire WL, et al. Correlation of primary breast cancer histopathology and estrogen receptor content. Breast Cancer Res Treat, 1981, 1: 37-41.
  • 3Kasumi F. Can microcalcifications located within breast carcinomas be detected by ultrasound imaging? Ultrasound Med Biol, 1998,14: 175-182.
  • 4Chow LW, Ho P. Hormonal receptor determination of 1052 Chinese breast cancers. J Surg Oncol, 2000,75:172-175.
  • 5Kurosumi M. Significance of immunohistochemical assessment of steroid hormone receptor status for breast cancer patients. Breast Cancer, 2003,10: 97-104.
  • 6Toniolo PG, Levitz M, Zeleniuch-Jacquotte A, et al. A prospective study of endogenous and breast cancer in postmenopausal women. J Natl Intl Cancer Inst, 1995,87: 190-197.
  • 7Stavros AT, Thickman D, Rapp CL, et al. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology,1995, 196:123-134.
  • 8Seidman MD, Lauren LA, Aisner SC, et al. Relationship of the size of the invasive component of the primary breast carcinoma to axillary lymph node metastasis. Cancer, 1995,75:65-71.
  • 9Stavros A,Thickman D,Rapp CL,et al.Solid breast nodules:use of sonography to distinguish between benign and malignant lesions.Radiology,1995,196:123-134.
  • 10Lee SW,Choi HY,Baek SY,et al.Role of color and power Doppler imaging in differentiating between malignant and benign solid breast masses.J Clin Ultrasound,2002,30:459-464.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部